期刊文献+

基于支持向量机的多分类军事目标识别应用 被引量:4

Application of Multi-classification Support Vector Machines to the Recognition of Military Target
在线阅读 下载PDF
导出
摘要 针对现代战场信息化程度的不断提高,电磁环境日趋复杂,侦查目标难以准确地识别情况,提出了运用支持向量机多分类器对军事侦查目标进行有效识别。结构风险最小化地支持向量机分类方法是小样本情况下统计机器学习的经典,具有速度快、泛化能力强等特点。用该算法建模军事目标的识别问题,达到了较高的识别准确率。所以应用在对侦查目标的识别上具有良好的效果,在军事应用上有较广阔的前景。 The informatization of modern battlefield is unceasing increasing its electromagnetic environment is complex day by day,as a result,the target recognition is difficult to be accurate in target reconnaissance. This paper proposed a method that can effectively recognize the target through the use of multi-classification support vector machine. The structure risk of this method is smallest,have fast spped and strong generalization. This method is used to model the recognition of military, and obtained higher accuracy of recognition
机构地区 解放军炮兵学院
出处 《火力与指挥控制》 CSCD 北大核心 2009年第8期97-100,共4页 Fire Control & Command Control
关键词 支持向量机 二叉树多分类器 军事目标识别建模 support vector machine ,multi-sorters of binary tree ,military target recognition modeling
作者简介 唐克(1962-),男,安徽东至人,副教授,硕士生导师,主要研究方向:武器系统分析与仿真。
  • 相关文献

参考文献6

二级参考文献36

  • 1VAPNIK V N. The nature of statistical learning [M].Berlin:Springer, 1995.
  • 2VAPNIK V N. Statistical learning theory [M]. New York:John Wiley & Sons, 1998.
  • 3SCHōLKOPH B, SMOLA A J, BARTLETT P L. New support vector algorithms[J]. Neural Computation.2000, 12(5):1207--1245.
  • 4SUYKENS J A K, VANDEWALE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293--300.
  • 5CHEW H-G, BOGNER R E, LIM C-C, Dual v-support vector machine with error rate and training size beasing[A]. Proceedings of 2001 IEEE Int Conf on Acoustics,Speech, and Signal Processing [C]. Salt Lake City,USA: IEEE, 2001. 1269--1272.
  • 6LIN C-F, WANG S-D. Fuzzy support vector machines[J]. IEEE Trans on Neural Networks, 2002, 13(2):464--471.
  • 7SUYKENS J A K, BRANBANTER J D, LUKAS L, et al. Weighted least squares support vector machines:robustness and spare approximation[J]. Neuroeomputing, 2002, 48(1): 85--105.
  • 8ROOBAERT D. DirectSVM: A fast and simple support vector machine perception [A]. Proceedings of IEEE Signal Processing Society Workshop[C]. Sydney, Australia: IEEE, 2000. 356--365.
  • 9DOMENICONI C. GUNOPULOS D. Incremental support vector machine construction [A]. Proceedings of IEEE Int Conf on Data Mining[C]. San Jose, USA:IEEE,2001. 589--592.
  • 10OSUNA E, FREUND R, GIROSI F. An improved training algorithm for support vector machine [A].Proceedings of 1997 IEEE Workshop on Neural Networks for Signal Processing[C]. Amelea Island, FL:IEEE, 1997. 276--285.

共引文献204

同被引文献22

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部