期刊文献+

非齐型空间上Fefferman-Stein加权向量值极大不等式

Weighted Valuable Maximal Inequalities of Fefferman-Stein on Non-Homogeneous Spaces
在线阅读 下载PDF
导出
摘要 应用Y.Sawano的结果及对偶理论,将K.F.Andersen和R.T.John的Fefferman-Stein加权向量值极大不等式从欧氏空间Rn推广到非齐型空间上.该文的证明思想对于欧氏空间上的向量值极大不等式的证明同样适用. In terms of the results of Y. Sawano and the duality theory, the authors give the Fefferman-Stein weighted valuable maximal inequalities on non-homogeneous space that generalize the results of K. F. Andersen and R. T. John. Meanwhile, the idea is also right when it comes to the valuable maximal inequalities on Euclidean space.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2009年第7期655-658,共4页 Transactions of Beijing Institute of Technology
基金 北京理工大学引进人才启动项目(52101)
关键词 非齐型空间 极大不等式 加权向量值 插值定理 non-homogeneous space maximal inequality weighted value interpolation theorem
作者简介 王杰(1959-),男,博士后,副教授,E-mail:jiewangxxxbit@bit.edu.cn.
  • 相关文献

参考文献13

  • 1Coifman R R, Weiss G. Analyse harmonique non-commutative sur certains espaces homogenes [M]. Berlin.. Springer-Verlag, 1971.
  • 2Coifman R R, Weiss G. Extension of Hardy spaces and their use in analysis[J]. Ball Amer Math Soc, 1977,83: 569 - 645.
  • 3Maci'as R A, Segovia C A. A decomposition into atoms of distribution on space of homogeneous type[J]. Adv in Math, 1979,33:271 - 309.
  • 4杨乐 龙瑞麟.齐型空间上的BMO函数[J].中国科学,1984,4:301-312.
  • 5Orobitg J, Perez C. Ap weights for non doubling measures in R^n and application[J]. Trans Amer Math Soc, 2002,354 : 2013 - 2033.
  • 6Tolsa X. BMO, H^1 and CZO for non doubling measures [J]. Ann Math,2000,319:89 - 149.
  • 7David G. Wavelets and singular integrals on curves and surfaces[M]. Berlin: Springer-Verlag, 1991.
  • 8Tolsa X. Littlewood-Paley theory and the T(1) theorem with non-doubling measures[J]. Adv in Math, 2001, 164: 57-116.
  • 9Nazarov F, Treil S, Volberg A. Tb theorem on non- homogeneous spaces [J]. Duck Math J, 2002, 113: 259 - 312.
  • 10Fefferman C, Stein E M. Some maximal inequalities [J]. AmmerJ Math,1971,93:107-115.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部