摘要
针对多目标优化问题,提出一种用于求解多目标优化问题的蚁群算法。该算法定义连续空间内求解多目标优化问题的蚁群算法的信息素更新方式,根据信息素的概率转移和随机选择转移策略指导蚂蚁进行搜索,保证获得的Pareto前沿的均匀性以及Pareto解集的多样性。对算法的收敛性进行分析,利用2个测试函数验证算法的有效性。
Aiming at multi-objective optimization problem, this paper proposes an Ant Colony Algorithm(ACA) for solving Multi-objective Optimization Problem(MOPACA). An improved pheromone updating process based on continuous space is described. Two moving strategies are used in the searching process to ensure better solutions. Convergence property of the algorithm is analyzed. Preliminary simulation results of two benchmark functions show the feasibility of the algorithm.
出处
《计算机工程》
CAS
CSCD
北大核心
2009年第15期168-169,172,共3页
Computer Engineering
关键词
蚁群算法
多目标优化
收敛性分析
Ant Colony Algorithm(ACA)
multi-objective optimization
convergence analysis
作者简介
池元成(1981-),男,博士研究生,主研方向:优化算法;E-mail: chiyuancheng@ 126.com
蔡国飙,教授