摘要
在获得一个含变化3-5阶非线性、弱非局域性、增益及非线性增益的广义薛定谔方程的自相似解的基础上,采用数值方法研究了解的稳定性。结果表明,在同时具有或没有非局域性和5阶非线性的介质中可以形成与传播自相似波;而且当相位参数远离±2^(1/2)时,非局域度和累积衍射将极大影响自相似波的稳定性。
Exact self-similar solution of a generalized nonlinear SchrSdinger equation with varying cubic-quintic nonlinearity, weakly nonlocality, gain and nonlinear gain was obtained. The stability of the solution was studied numerically. The results show that the self-similar solitary wave can exist and propagate in the media with or without both nonlocality and quintic nonlinearity, and that the stability of the self-similar solitary wave is drastically influenced by the degree of nonlocality and the cumulative diffraction under the condition that the phase parameter is fax from ±√2.
出处
《量子电子学报》
CAS
CSCD
北大核心
2009年第4期465-472,共8页
Chinese Journal of Quantum Electronics
关键词
非线性光学
自相似解
弱非局域非线性薛定谔方程
非线性增益
nonlinear optics
self-similar solution
weakly nonlocal nonlinear SchrSdinger model
nonlinear gain
作者简介
张少武(1964-),博士,主要从事量子光学及非线性光学研究.E-mail:zsw2622@vip.163.com