期刊文献+

潮流PV-PQ转换的混合互补方法 被引量:2

Mixed Complementarity Method for PV-PQ Bus Type Switching in Power Flow Computation
在线阅读 下载PDF
导出
摘要 潮流PV-PQ转换反映无功调节电压的规律,属于典型的互补问题。文中通过引入互补理论建立了PV-PQ转换潮流的严格混合互补模型,结合现代内点算法与互补松弛成功地求解了该模型。深入剖析PV-PQ转换逻辑,并与互补模型对比校验表明:由于启发式逻辑的缺陷,PV-PQ转换容易导致节点类型错误识别并得到静态电压不稳定解,其数值发散与识别性发散不一定对应系统电压失稳,而互补模型可以弥补其缺陷,提高结果的可靠性。IEEE标准系统和一个实际系统的仿真结果证实了上述结论。 The PV-PQ bus type switching is a typical complementarity problem, which reflects the discipline of voltage control by reactive power in power flow computation. By introducing the complementarity theory, the strict mixed complementarity model for PV-PQ bus type switching is constructed, and it is solved successfully by the modern interior method integrated with a complementarity relaxation method. Analysis on PV-PQ type switching logic and comparison with the complementarity model show that the type switching logic may cause the bus type misidentification and obtain static voltage unstable points. As a result, the related numerical and identificate divergence may not correspond to system voltage unstable point. All these issues can be involved in the complementarity model to improve the reliability of the results. The conclusions are verified by simulation of IEEE standard systems and a real system.
出处 《电力系统自动化》 EI CSCD 北大核心 2009年第14期37-40,共4页 Automation of Electric Power Systems
基金 国家自然科学基金资助项目(50867001) 高等学校博士学科点专项科研基金资助项目(20060593002) 广西自然科学基金资助项目(0639007) 广西研究生创新项目(2008105930808M087)~~
关键词 PV-PQ转换 互补问题 变分不等式 内点法 电压稳定 PV-PQ bus type switching complementarity problems variational inequalities interior point method (IPM) voltage stability
作者简介 李保卫(1985-),男,通信作者,硕士研究生,主要研究方向:电力系统优化。E—mail:sbwkbg@163.com 韦化(1954-),男,教授,博士生导师,主要研究方向:最优化理论在电力系统中的应用。 李滨(1975-),女,博士研究生,主要研究方向:电力系统优化。
  • 相关文献

参考文献6

  • 1赵晋泉,江晓东,张伯明.潮流计算中PV-PQ节点转换逻辑的研究[J].中国电机工程学报,2005,25(1):54-59. 被引量:45
  • 2Hande Y. Benson,Arun Sen,David F. Shanno,Robert J. Vanderbei. Interior-Point Algorithms, Penalty Methods and Equilibrium Problems[J] 2006,Computational Optimization and Applications(2):155~182
  • 3M. Seetharama Gowda,Jong-Shi Pang. The basic theorem of complementarity revisited[J] 1993,Mathematical Programming(1-3):161~177
  • 4Patrick T. Harker,Jong-Shi Pang. Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications[J] 1990,Mathematical Programming(1-3):161~220
  • 5Patrick T. Harker,Baichun Xiao. Newton’s method for the nonlinear complementarity problem: A B-differentiable equation approach[J] 1990,Mathematical Programming(1-3):339~357
  • 6S. J. Chung. NP-Completeness of the linear complementarity problem[J] 1989,Journal of Optimization Theory and Applications(3):393~399

二级参考文献8

共引文献44

同被引文献18

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部