期刊文献+

快速CV双水平集算法的人脑MR图像分割 被引量:6

Fast Chan-Vese Multiphase Level Set Algorithm on Human Brain MR Image Segmentation
在线阅读 下载PDF
导出
摘要 针对CV模型的多水平集算法需要较高的数值稳定性以及曲线演化速度慢的缺点,根据人脑MR图像的特征,提出一种快速CV双水平集算法,统计被2条曲线划分成4类的直方图,构造符号矩阵,依次将直方图上的点放入其他类中,根据能量的变化更改该点对应点的符号,得到粗分割结果,并对粗分割结果进行优化。对MR图像进行的分割实验表明,其分割效果更好,速度有大幅度的提高。 Multiphase level set method of Chan-Vese(CV) model is not suitable for real-time application for having numerical stability constraints and its low efficiency. Aiming at this disability and based on the specialty of human brain, a fast method to solve is developed. This approach computes the histograms of four areas which can be used to distinguish the area cut by two curves, and constructs signed tables. The points of the histogram are changed to other clusters and the sign of the points are checked according to the change of the energy. And the improved mean of small neighborhood method is used to optimize the results and get the final edges. Experimental results show that the new model can get the better results in an efficient way.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第14期181-183,共3页 Computer Engineering
基金 江苏省教育厅"青蓝工程"基金资助项目(2006)
关键词 CV模型 直方图 图像分割 Chan-Vese(CV) model histogram image segmentation
作者简介 詹天明(1984-),男,硕士研究生,主研方向:图像分析与处理,模式识别; E—mail:zhantianming1984@sina.com 张建伟,教授、博士; 陈允杰,博士研究生; 王宇,硕士研究生 吴玲玲,硕士研究生
  • 相关文献

参考文献5

  • 1Chan T,Vese L.Active Contours Without Edges[J].IEEE Trans.on Image Processing,2001,10(2):266-277.
  • 2Luminita A,Vese L,Chan T.A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model[J].International Journal of Computer Vision,2002,50(3):271-293.
  • 3张建伟,陈允杰,夏德深.基于直方图的快速Mumford-Shah模型MRI分割[J].中国图象图形学报,2005,10(7):838-843. 被引量:4
  • 4Li Chunming,Xu Chenyang,Gui Changfeng,et al.Level Set Evolution Without Re-initialization:A New Variational Formulation[C]//Proc.of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.[S.1.]:IEEE Press,2005:430-436.
  • 5Song Bing,Chan T.A Fast Algorithm for Level Set Based Optimization[R].Los Angeles,USA:University of California,UCLA CAM Report:02-68,2002.

二级参考文献10

  • 1Kass M, Witkin A, Terzopulos D. Snakes: Active contour models [ J ]. International Journal of Computer Vision, 1987, 1 ( 4 ):321 ~331.
  • 2Malladi R, Sethian J A, Vemuri B C. Shape modeling with front propagation: A level set approach[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17 (2): 158 ~ 175.
  • 3Caselles V, Kimmel R, Sapiro G. Geodesic active contours [ J ].International Journal of Computer Vision, 1997,22( 1 ) :61 ~ 79.
  • 4Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems[J]. Communications on Pure and Applied Mathematics, 1989, 42 (5) :577 ~ 685.
  • 5Chambolle A. Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations[ J]. Society for Industrial and Applied Mathematics, 1995,55 ( 3 ): 827 ~ 863.
  • 6Ambrosio L, Tortorelli V. On the approximation of functionals depending on jumps by elliptic functionals via γ-convergence [ J ].Communication on Pure and Applied Mathematics, 1990, 43 (8):999 ~ 1036.
  • 7Ambrosio L, Tortorelli V. On the approximation of free discontinuity problems[ J ]. Bollettino de la Unione Matematica Italiana, 1992,7(6-B) :105 ~ 123.
  • 8Chan T, Vese L. Active contours without edges [ J]. IEEE Transactions on Image Processing, 2001,10(2) :266 ~ 277.
  • 9Chan T, Vese L. An efficient variational multiphase motion for the Mumford-Shah model [ A ]. In: Proceedings of the 34 ' th Asilomar Conference on Signals, Systems and Computers[ C] , Asilomar, CA,USA, 2000,1: 490 ~ 494.
  • 10冯志林,尹建伟,陈刚,董金祥.Mumford-Shah模型在图像分割中的研究[J].中国图象图形学报(A辑),2004,9(2):151-158. 被引量:10

共引文献3

同被引文献44

  • 1周则明,王元全,王平安,夏德深.基于水平集的3D左心室表面重建[J].计算机研究与发展,2005,42(7):1173-1178. 被引量:8
  • 2Muller H, Michous N, Bandon D, et al. A Review of Content-based Image Retrieval Systems in Medical Applications-Clinical Benefits and Future Directions[J]. International Journal of Medical Informatics, 2004, 73( 1 ): 1-23.
  • 3Wu Zhenyu, Leahy R. An Optimal Graph Theoretic Approach to Data Clustering: Theory and Its Application to Image Segmentation[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1993, 15(11): 1101-1113.
  • 4Shi Jianbo, Malik J. Normalized Cuts and Image Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905.
  • 5Ding C H Q, He Xiaofeng, Zha Hongyuan, etal. A Min-Max Cut Algorithm for Graph Partitioning and Data Clustering[C]//Proc. of IEEE International Conference on Dala Mining. [S. l.]: IEEE Press, 2001 : 107-114.
  • 6Li Xiaobin, Tian Zheng. Optimum Cut-based Clustering[J]. Signal Processing, 2007, 87( 11 ): 2491-2502.
  • 7Gomory R, Hu T C. Multitcrminal Network Flows[J]. Society for Industrial and Applied Mathematics Journals, 1961, 9(4): 551-570.
  • 8Veksler O, Image Segmentation by Nested Cuts[C]//Proc. of IEEE Conference on Computer Vision and Pattern Recognition. [S. I.]: IEEE Press, 2000: 339-344.
  • 9FU K S,MUI J K. A Survey of Image Segmentation[J]. Pattern Recognition, 1981,13 ( 1 ) : 3 - 16.
  • 10WANG Ping, WANG Hong-lei. A modified FCM algorithm for MRI brain image segmentation [ C ]//Proc of International Seminar on Fu- ture Biomedical Information Engineering. 2008:26-29.

引证文献6

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部