期刊文献+

基于分层采样粒子滤波的说话人跟踪方法 被引量:2

Speaker tracking method using layered sampling particle filter
在线阅读 下载PDF
导出
摘要 利用分层采样方法,融合波达方向和时间延迟两种信息,实现了对说话人的定位与跟踪.分层采样方法考虑波达方向和时间延迟这两种不同观测信息对说话人位置估计精度的差异,将基于波达方向滤波得到的状态后验概率密度函数作为基于时间延迟滤波的重要性采样函数,增强了重要性概率密度函数与后验概率密度函数的相似程度,从而改善了重要性概率密度函数的质量,减小了采样粒子权值的方差,提高了对说话人位置的估计精度.仿真实验验证了该方法的有效性. Utilizing layered sampling method, both direction of arrival (DOA) and time difference of arrival (TDOA) of speech source are fused to localize and track the speaker. Since the measurement modalities differ in the level of information which they provide about the state, the layered sampling method constructs an informed proposal by integrating filtering results from DOA measurement, then particles are sampled from this proposal in TDOA measurement based particle filter. As the similarity between the importance density function and the posterior density function is enhanced, the quality of the proposal function is improved and variance of sample weights is decreased, thus the speaker localization accuracy is improved. Simulation results of two scenarios show the validity of the proposed method.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2009年第4期580-586,共7页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(60772161 60372082) 高等学校博士学科点专项科研基金资助项目(200801410015)
关键词 说话人跟踪 粒子滤波 波达方向估计 时间延迟估计 分层采样 speaker tracking particle filter DOA estimation TDOA estimation layered sampling
作者简介 侯代文(1972-),男,博士,E-mail:hodevin@gmail.com 殷福亮(1962-),男,教授,博士生导师,E-mail:flyin@dlut.edu.cn.
  • 相关文献

参考文献1

  • 1Arnaud Doucet,Simon Godsill,Christophe Andrieu. On sequential Monte Carlo sampling methods for Bayesian filtering[J] 2000,Statistics and Computing(3):197~208

同被引文献19

  • 1CARPENTER J, CLIFFORD P, FEARNHEAD P. Improved parti- cle filter for nonlinear problems [ J]. IEE Proceedings of Radar, So- nar and Navigation, 1999, 43(12) : 2 -7.
  • 2MINKKINEN P. Practical application of sampling theory [ J]. Che- mometrics and Intelligent Laboratory Systems, 2004, 74( 1 ) : 85 - 94.
  • 3PANG Z Y, LIU D R, JIN N, et al. A Monte Carlo particle model assiated with neural networks for tracking problem [ J]. 1EEE Tranctinns on Circuits and Systems, 2008, 55-1( 11): 3421 - 3429.
  • 4ATHALYE A, BOLIC M, HONG S, et al. Architectures and mem- ory schemes for sampling and resampling in particle filters [ C]// 2004 IEEE l lth Digital Signal Processing Workshop and the 3rd IEEE Signal Processing Education Workshop. Piscataway: IEEE Press, 2004:92-96.
  • 5DOUCET A, GODSILL S J, ANDRIEU C, et al. On sequential Monte Carlo sampling methods for Bayesian filtering [ J]. Statistical Computation, 2000, 10(3) : 197 -208.
  • 6Maurice F.FaUon,Simon J.Godsil,Acoustic Source Localization and Tracking of a Time-Varying Number of Speakers,IEEE Transaction on audio,speech and language processing,2012.
  • 7Andrey Ronzhin,Alexander Ronzhin,Viktor Budkov,Audiovisual speaker localization in medium smart meeting room,2011 8th International Conference on Information, Communications and Signal Processing ( ICICS 2011 ) :1-5.
  • 8Axel Plinge,Daniel Hauschildt,etc.Multiple speaker tracking using a microphone array by combining auditory processing and a gaussian mixture cardinalized probability hypothesis density filter,2011 IEEE International Conference on Acoustics,Speech and Signal Processing ( ICASSP 2011 ) :2476-2479.
  • 9Alireza Masnadi-shirazi,Bhaskar D.Rao,Separation and tracking of multiple speakers in a reverberant environment using a multiple model particle filter glimpsing method,2011 IEEE International Conference on Acoustics,Speech and Signal Processing ( ICASSP2011 ) :2516-2519.
  • 10张苗辉,辛明,刘先省.基于粒子滤波的机动目标跟踪改进算法[J].系统工程与电子技术,2008,30(5):949-951. 被引量:9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部