期刊文献+

真菌异化硝酸盐还原机理的研究进展 被引量:10

Study Progress on the Mechanism of Dissimilatory Nitrate Reduction in Fungi
原文传递
导出
摘要 真菌异化硝酸盐还原途径的发现打破了反硝化仅存在于原核细胞这一传统观念。真菌异化硝酸盐还原途径是在环境中氧供给受限的情况下发生的,包括反硝化和氨的发酵。硝酸盐能诱导产生反硝化作用的酶,其中,硝酸盐还原酶与亚硝酸还原酶位于线粒体中,它们所催化的酶促反应能偶联呼吸链ATP合成酶合成ATP,同时产生NO。与参与反硝化作用前两个酶不同,真菌NO还原酶能以NADH为直接电子供体将NO还原为N2O,在NAD+的再生和自由基NO的脱毒中起着重要作用。氨发酵则将硝酸盐还原成NH4+,同时偶联乙酸的生成和底物水平磷酸化。此文从参与该过程的关键酶、关键酶的表达调节、真菌与细菌异化硝酸盐还原的比较等角度综述了真菌异化硝酸盐还原的最新研究进展。 The finding of dissimilatory nitrate reductase in fungi breaks the traditional concept that denitrification has been considered to only occur in a prokaryotic cell. Dissimilatory nitrate reduction in fungi includes denitrification and ammonia fermentation, which occurs under the conditions of limited aeration. Nitrate and nitrite can induce denitrification-related enzymes, which include nitrate reductase, nitrite reductase and nitric oxide reductase. Nitrate reductase and nitrite reductase exists in mitochondria, and enzymatic reactions they catalyze are coupled with ATP generation through ATP synthase in the respiratory chain and produce nitric oxide(NO). In contrast to the two enzymes, NO reductase uses NADH as the direct electron donor and thus might function in the regeneration of NAD+ and detoxification of the toxic radical, NO. Ammonia fermentation can reduce nitrate to ammonium and couples acetogenic reaction with substrate-level phosphorylation. In this review, the latest progress about the involved main enzymes, their gene expression regulation, and the comparison of the dissimilatory nitrate reduction between fungi and bacteria were discussed.
出处 《微生物学通报》 CAS CSCD 北大核心 2009年第7期1052-1057,共6页 Microbiology China
基金 国家自然科学基金资助项目(No.20807059) 重庆大学青年骨干教师创新能力培育基金资助(No.CDCX025)
关键词 异化硝酸盐还原 氨发酵 反硝化 真菌 Dissimilatory nitrate reduction, Ammonia fermentation, Denitrification, Fungi
作者简介 通讯作者:Tel:86—23—65120758;huangcancau@163.com
  • 相关文献

参考文献3

  • 1胡朝松,李春强,廖文彬,彭明.铜型亚硝酸还原酶的电子传递模式及催化机理研究进展[J].微生物学通报,2008,35(7):1136-1142. 被引量:5
  • 2D. J. Richardson*,B. C. Berks,D. A. Russell,S. Spiro,C. J. Taylor. Functional, biochemical and genetic diversity of prokaryotic nitrate reductases[J] 2001,Cellular and Molecular Life Sciences(2):165~178
  • 3N. Takaya,H. Shoun. Nitric oxide reduction, the last step in denitrification by Fusarium oxysporum, is obligatorily mediated by cytochrome P450nor[J] 2000,MGG - Molecular and General Genetics(2):342~348

二级参考文献47

  • 1Harris RL, Eady RR, Hasnain SS, et al. Coordinate synthesis of azurin I and copper nitrite reductase in Alcaligenes xylosoxidans during denitrification. Arch Microbiol, 2006, 186(3): 241-249.
  • 2Oakley BB, Francis CA, Roberts KJ, et al. Analysis of nitrite reductase (nirK and nirS) genes and cultivation reveal depauperate community of denitrifying bacteria in the Black Sea suboxic zone. Environ Microbiol, 2007, 9(1): 118-130.
  • 3Basaglia M, Toffanin A, Baldan E, et aL Selenite-reducing capacity of the copper-containing nitrite reductase of Rhizobium sullae. FEMS Microbiol Lett, 2007, 269(1): 124-130.
  • 4You SJ. Identification of denitrifying bacteria diversity in an activated sludge system by using nitrite reductase genes. Biotechnol Lett, 2005, 27(19): 1477-1482.
  • 5Ellis M J, Dodd FE, Strange RW, et al. X-ray structure of a blue copper nitrite reductase at high pH and in copper-free form at 1.9 A resolution. Acta Crystallogr D Biol Crystallogr, 2001, 57(Pt 8): 1110-1118.
  • 6Stadmark J, Leonardson L. Greenhouse gas production in a pond sediment: effects of temperature, nitrate, acetate and season. Sci Total Environ, 2007, 387(1-3): 194-205.
  • 7Sφvik AK, Augustin J, Heikkinen K, et al. Emission of the greenhouse gases nitrous oxide and methane from constructed wetlands in Europe. J Environ Qual, 2006, 35(6): 2360-2373.
  • 8Antonyuk SV, Strange RW, Sawers G, et al. Atomic resolution structures of resting-state, substrate- and product-complexed Cu-nitrite reductase provide insight into catalytic mechanism. Proc Natl Acad Sci USA, 2005, 102(34): 12041-12046.
  • 9Zumft WG. Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev, 1997, 61(4): 533-616.
  • 10Stirpe A, Sportelli L, Wijma H, et al. Thermal stability effects of removing the type-2 copper ligand His306 at the interface of nitrite reductase subunits. Eur Biophys J, 2007, 36(7): 805-813.

共引文献4

同被引文献194

引证文献10

二级引证文献148

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部