期刊文献+

基于遗传算法的多学科设计优化分解方法 被引量:1

Genetic algorithm-based decomposition method for multidisciplinary design optimization
在线阅读 下载PDF
导出
摘要 通过分析现有的多学科设计优化中任务分解方法(枚举法、聚类识别法和分支定界法)的特点,指出了现有方法的不足.提出了将遗传算法应用于优化任务的分解问题,给出了具体的算法描述和详细的任务分解算法流程,并分析总结给出了该算法的优点:①遗传算法对搜索空间没有任何要求,因此对函数关系矩阵(FDT,Function Dependence Table)也没有任何要求;②遗传算法是一种随机迭代方法,不需要估计初值;③遗传算法同时对一组解进行搜索,大大提高了搜索速度,在保证计算精度的基础上得到全局最优解.最后还以齿轮减速器优化问题为例,将遗传算法应用于上述问题的任务分解过程,得到了较为满意的分解结果,并从计算方案次数的角度定量地比较了所提出方法与现有方法的区别,从而证明了该方法的正确性和优越性. Based on the analyzing of current methods of solving task decomposition problem in MDO, such as enumerate algorithm, clustering identification method, branch and bound method(BBM) , their disadvantages were pointed out. Then, the description and detailed flow were delivered. The advantages of GA were described as follows: first, there is no special request for search space and function dependence table (FDT) ; second, GA is a stochastic iterative method, so the initial value is unnecessary; third, GA searches from a group of solutions simultaneity, which improves the search speed and gets global optimal solution with higher accuracy. Finally, the gear reducer optimization problem was taking as an example and GA was used. The analyzing result was acceptable. The calculation quantity was reduced rapidly. The correctness and advantage of the GA were proved when compared the calculation quantity with the methods mentioned before.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2009年第6期673-677,共5页 Journal of Beijing University of Aeronautics and Astronautics
关键词 多学科设计优化 遗传算法 任务分解 muhidisciplinary design optimization (MDO) genetic algorithm task decomposition
作者简介 陈云霞(1977-),女,安徽怀宁人,副教授,chengyunxia@buaa.edu.cn.
  • 相关文献

同被引文献16

  • 1曹鹏彬,肖人彬,库琼.公理设计过程中耦合设计问题的结构化分析方法[J].机械工程学报,2006,42(3):46-55. 被引量:36
  • 2HUANG H Z, YU H, ZHANG X, et al. Collaborative optimization with inverse reliability for multidisciplinary systems uncertainty analysis[J]. Engineering Optimization, 2010, 42(8). 763-773.
  • 3TAO Y R, HAN X, JIANG C, et al. A method to improve computational efficiency for CSSO and BLISS[J]. Structure Multidisciplinary Optimization, 2011, 44: 39-43.
  • 4TYSON R B. Applying the design structure matrix to system decomposition and integration problems a review and new directions [J]. IEEE Transactions on Engineering Management, 2001, 48(3): 292-306.
  • 5SHAN S Q, GARY G W. Survey of modeling and optimization strategies to solve high-dimensional design problems with eomputationally-expensive black-box functions[J]. Structural Multidiscipline Optimization, 2010, 41: 219-241.
  • 6DING B L, YAO T K, CHIA H M. A dynamic planning approach for new product development [J]. Concurrent Engineering, 2009, 17(1): 17-43.
  • 7TAHER N, ELAHE T F, NARGES P, et al. An efficient hybrid algorithm based on modified imperialist competitive algorithm and K-means for data clustering[J]. Engineering Applications of Artificial Intelligence, 2011 (24): 306-317.
  • 8JAMES T A, MICHANE K. Optimal partitioning and coordination decisions in decomposition-based design optimization[J]. Journal of Mechanical Design, 2009 (131).- 0810080-8).
  • 9CHEN L, DING Z, LI S. A formal two-phase method for decomposition of complex design problems[J]. Journal of Mechanical Design, Transactions of the ASME, 2005, 127(2): 184-195.
  • 10MENG X H, XIE Y B. Design decomposition for cross-organizational assignment of design tasks[J]. Concurrent Engineering Research and Applications, 2010, 18(2): 111-119.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部