期刊文献+

Fractional Fourier transform of Lorentz beams 被引量:1

Fractional Fourier transform of Lorentz beams
在线阅读 下载PDF
导出
摘要 This paper introduces Lorentz beams to describe certain laser sources that produce highly divergent fields.The fractional Fourier transform (FRFT) is applied to treat the propagation of Lorentz beams.Based on the definition of convolution and the convolution theorem of the Fourier transform,an analytical expression for a Lorentz beam passing through a FRFT system has been derived.By using the derived formula,the properties of a Lorentz beam in the FRFT plane are illustrated numerically. This paper introduces Lorentz beams to describe certain laser sources that produce highly divergent fields.The fractional Fourier transform (FRFT) is applied to treat the propagation of Lorentz beams.Based on the definition of convolution and the convolution theorem of the Fourier transform,an analytical expression for a Lorentz beam passing through a FRFT system has been derived.By using the derived formula,the properties of a Lorentz beam in the FRFT plane are illustrated numerically.
作者 周国泉
机构地区 School of Sciences
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第7期2779-2784,共6页 中国物理B(英文版)
基金 Project supported by the Scientific Research Fund of Zhejiang Provincial Education Department of China
关键词 Lorentz beam fractional Fourier transform propagation properties Lorentz beam, fractional Fourier transform, propagation properties
作者简介 zhouguoquan178@sohu.com
  • 相关文献

参考文献26

  • 1Gawhary O E and Severini S 2006 J. Opt. A: Pure Appl. Opt. 8 409.
  • 2Naqwi A and Durst F 1990 Appl. Opt. 29 1780.
  • 3Dumke W P 1975 J. Quantum Electron. QE-11 400.
  • 4Zhou G Q, Zheng J and Xu Y Q 2008 J. Mod. Opt. 55 993.
  • 5Zhou G Q 2008 Acta Phys. Sin. 57 3494.
  • 6Gawhary O E and Severini S 2007 Opt. Commun. 269 274.
  • 7Mendlovic D and Ozaktas H M 1993 J. Opt. Soc. Am. A 10 1875.
  • 8Ozaktas H M and Mendlovic D 1993 J. Opt. Soc. Am. A 10 2522.
  • 9Lohmann A W 1993 J. Opt. Soc. Am. A 10 2181.
  • 10Lohmann A W, Mendlovic D and Zalevsky Z 1998 Prog. Opt. 38 263.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部