期刊文献+

三维声场问题边界元法中几乎奇异积分的正则化 被引量:3

Regularization of nearly singular integrals in the boundary element method for three dimensional acoustic problems
在线阅读 下载PDF
导出
摘要 针对三维声场边界元分析的几乎奇异积分问题,将基本解中三角函数进行Taylor级数展开,分离奇异部分和非奇异部分.采用一种半解析正则化算法,计算了近边界点几乎奇异面积分,非奇异部分仍然采用Gauss数值积分,从而克服奇异积分障碍.该算法适用于三角形线性等参元,对高次单元将其细分为几个三节点三角形单元即可应用该算法.对三维声场内问题和外问题算例,计算了近边界点的声压,数值结果证明了该算法的有效性和准确性. A semi-analytical regularization algorithm was applied to the evaluation of nearly singular surface integrals in the boundary element method (BEM) for three dimensional acoustic problems. In this method, the trigonometric function of acoustic fundamental solution was expended as Taylor series. Then the nearly singular integral parts and non-singular integral parts were separated. The semi-analytical regularization algorithm was used to solve the nearly singular integral parts and the conventional Gauss quadrature was used to solve non-singular integral parts, thus overcoming the nearly singular integral difficulty in acoustic BEM. This algorithm is applicable not only to linear triangular iso-parametric element but also to higher order element by subdividing the element into several triangular sub-elements. The sound pressures of the inner points near the boundary were computed for three dimensional acoustic interior and exterior problems. The computed results demonstrate the accuracy and the effectiveness of the present algorithm.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2009年第6期638-643,共6页 JUSTC
基金 安徽省自然科学基金(090414153)资助
关键词 边界元法 几乎奇异积分 正则化 三维声场问题 BEM nearly singular integral regularization 3D acoustic problem
作者简介 胡宗军,男,1975年生,博士生/副教授.研究方向:工程力学,计算力学.E-mail:huzongjun_1975@163.com 通讯作者:牛忠荣,博士/教授.E-mail:niu-zr@hfut.edu.cn
  • 相关文献

参考文献9

  • 1Chen L H, Schweikert D G. Sound radiation from an arbitrary body [J]. Journal of the Acoustical Society of America, 1963, 35(4): 1 626-1 632.
  • 2Chertock G. Sound radiation from vibrating surfaces [J]. Journal of the Acoustical Society of America, 1964,36 (3):1 305-1 313.
  • 3Liu Y J. Analysis of shell like structures by the boundary element method based on 3D elasticity: Formulation and verification [J]. Int J Number Methods Eng, 1998, 41: 541-558.
  • 4Davey K, Hinduja S. Analytical integration of linear three dimensional triangular elements in BEM [J]. Appl Math Modelling, 1998, 13:450-461.
  • 5Milroy J, Hinduja S, Davey K. The elastostatic three dimensional boundary elements method analytical integration for linear isoparametrix triangular elements [J].Appl Math Modelling, 1997, 21: 763-782.
  • 6Davey K, Rasgado M T A, Rosindale I. The 3D elastodynamic boundary element method: Semi-analytical integration for linear isoparametric triangular elements[J]. Int J Number Methods Eng, 1999, 44: 1 031-1 054.
  • 7Ma H, Kamiya N. A general algorithm for the numerical evaluation of nearly singular boundary integrals of various orders for two and three dimensional elasticity [J]. Computational Mechanics, 2002,29: 277-288.
  • 8Wu T W. Boundary Element Acoustics Fundamentals and Computer Codes [M]. USA: WIT Press, 2000: 51-66.
  • 9Niu Zhong-rong, Wendland W L, Wang Xiu-xi, et al. A new semi-analytical algorithm for the evaluation of the nearly singular integrals in three-dimensional [J]. Computer Methods of Applied Mechanics and Engineering, 2005,195: 1 057-1 074.

同被引文献27

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部