摘要
基于电力系统动态分析的微分代数模型,提出一种动态稳定性分析和失稳类型判别方法。利用带预测-校正步骤的延拓算法追踪平衡解流形,并采取考虑流形曲率大小的自适应策略控制步长;在计及元件动态特性的基础上,利用小扰动法在每个平衡点分析电力系统的动态稳定性,并用数值摄动法计算状态矩阵;根据状态变量的模式参与因子可方便判断系统的动态失稳类型。利用本文所提方法对新英格兰10机39节点系统进行了仿真分析并与时域仿真进行了比较,所得结果证明了本方法的有效性和实用性。
Based on the differential algebraic equation for the dynamic analysis of power systems, the method which investigates the dynamic stability of power systems and distinguishes the instability types is presented in the paper. Firstly, the equilibrium manifold is traced by a continuation method with a prediction-correction process, and an adaptive step size control strategy considering the curvature of the manifold is introduced. Then the dynamic stability of each equilibrium point is analyzed using small disturbance analysis method considering the dynamics of components, and the state matrix of system is calculated by the numerical disturbance scheme. The modal participation factors of the state variables are used to distinguish the instability types easily. Finally, the proposed method is applied in the New England 10-generator 39-Bus power system. The simulation results checked with those obtained by time domain simulation method show that the proposed method is effective and practical.
出处
《电工技术学报》
EI
CSCD
北大核心
2009年第6期103-108,共6页
Transactions of China Electrotechnical Society
关键词
动态稳定性
延拓法
自适应控制
小扰动分析法
模式参与因子
Dynamic stability, continuation method, adaptive control, small disturbance analysis, modal participation factor
作者简介
赵兴勇 男,1965年生,博士,副教授,主要研究方向为电力系统稳定、电力系统分析与控制。
张秀彬 男,1946年生,教授,博士生导师,主要从事电力系统安全经济控制、电力系统分析等方面的教学和研究。