摘要
探讨的是空间有自由电荷分布时通过拉普拉斯方程求解空间电势分布的问题。当空间有自由电荷分布且电荷分布有一定特殊性时(球对称),可以将空间各点的电势看作是自由电荷在空间产生的电势与介质上的极化电荷在空间产生的电势相叠加。自由电荷在空间产生的电势可以用高斯(M.E.Gauss)定理进行求解,介质上的极化电荷在空间产生的电势分布满足拉普拉斯方程,可以用分离变量法求解。这样就把空间中有自由电荷分布时需求解的泊松方程的问题转化为拉氏方程进行求解,使问题得到简化。
The electric potential in the space with free electric charge special distribution (symmetry of sphere) was solved by Laplace's equation. In this case, the spatial potential was considered of superposition by the potential produced by free electric charges and polarized charges. While the potential produced by free electric charges could be solved with Gauss's Law, and the potential produced by polarized charges was depicted by Laplac's equation which can solved by the separation-of-variable method. As a result, Poisson's equation can be transferred into Laplace's equation which can be solved easier.
出处
《贵州大学学报(自然科学版)》
2009年第2期5-9,共5页
Journal of Guizhou University:Natural Sciences
基金
贵州省自然科学基金资助项目(黔科合J[2008]2046号)
贵州大学基金(贵大人基合字(2007)029号)
关键词
电势
泊松方程
拉普拉斯方程
高斯定理
分离变量法
electric potential
Poisson's equation
laplace's equation
gauss's law
separation-of-variable method
作者简介
肖星星(1982-),男,湖北麻城人,硕士研究生;研究方向:光学