期刊文献+

视频中运动人脸的检测与特征定位方法 被引量:6

Face Detection and Feature Location of Moving Men in Video
在线阅读 下载PDF
导出
摘要 针对现有人脸检测方法存在的检测质量与速度不平衡的问题,提出了视频序列中运动人脸的检测与特征定位方法.首先利用Adaboost方法检测出人脸的大致范围,根据肤色模型确定人脸的具体位置,并从图像中提取出人脸部分;然后利用基于帧间亮度差的人脸区域的PSNR判断图像清晰度,从而找出人脸区域清晰度高且尽可能大的视频帧;最后对该视频帧进行人脸检测和特征定位.实验结果表明,与现有人脸检测方法相比,文中方法速度快、人脸检测率约为94.8%,眼角、口唇角定位结果更为准确. In order to balance the detection quality and the computing speed of the existing human face-detecting methods, an algorithm for face detection and feature location of moving men in a video is proposed. In this algo- rithm, first, the approximate face region is detected using the Adaboost method. 'Next, the specific face region is determined using the skin color model, and the face part is picked up from the frame. Then, the video frame with a high face-region definition and a region as large as possible is selected by judging the image definition from the Peak Signal-to-Noise Ratio (PSNR) based on the difference between two neighbor frames in face region. Finally, the face detection and feature location of the video frame are performed. Experimental results indicate that, as com- pared with the existing face-detecting methods, the proposed method helps to perform more accurate feature location for corners of eye and mouth with higher calculating speed, the face-detecting rate being about 94.8%.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第5期31-37,共7页 Journal of South China University of Technology(Natural Science Edition)
基金 国家"863"计划项目(2006AA01Z129)
关键词 视频处理 人脸检测 特征定位 图像清晰度 峰值信噪比 肤色模型 video processing face detection feature location image definition Peak Signal-to-Noise Ratio skin color model
作者简介 作者简介:雷蕴奇(1963-),男,博士,副教授,主要从事图像处理与模式识别、智能系统、计算机网络研究.E-mail:yqlei@xmu.edu.en
  • 相关文献

参考文献17

  • 1Daly S J. The visible difference predictor:an algorithm for the assessment of image fidelity [ M]//Watson A B. Digital hnages and Human Vision. Cambridge: MIT Press, 1993 : 179-206.
  • 2Heeger D J ,Teo P C. A model of perceptual image fidelity [ C ] // Proceedings of International Conference on Image Processing. Washington D C : IEEE, 1995 : 343- 345.
  • 3Ichigaya A, Nishida Y, Nakasu E. Nonreference method for estimating PSNR of MPEG-2 coded video by using DCT coefficients and picture energy [ J ]. IEEE Transactions on Circuits and Systems for Video Technology, 2008,18(6) :817-818.
  • 4Christian J, Daniele M, Giovanni L, et al. Quality assessment of motion rendition in video coding [ J ]. IEEE Transactions on Circuits and Systems for Video Technology, 1999,9 (5) :766-782.
  • 5Huynh-Thu Q, Ghanbari M. Scope of validity of PSNR in image/video quality assessment [ J]. Electronics Letters, 2008,44( 13 ) :800-801.
  • 6姜军,张桂林.一种基于知识的快速人脸检测方法[J].中国图象图形学报(A辑),2002,7(1):6-10. 被引量:41
  • 7Jones M J, Rehg J M. Statistical color models with application to skin detection [ C] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Fort Collins : IEEE, 1999:274-280.
  • 8Miao J, Yin B, Wang K, et al. A hierarchical multiscale and muhiangle system for human face detection in a complex background using gravity-center template [ J].Pattern Recognition, 1999,32 (7) : 1237-1248.
  • 9Kim K I, Kim J H ,Jung K. Face recognition using support vector machines with local correlation kernels [ J ]. International Journal of Pattern Recognition and Artificial Intelligence ,2002,16( 1 ) :97-111.
  • 10Viola P,Jones M. Rapid object detection using a boosted cascade of simple features [C]// Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai : IEEE, 2001 : 511 - 518.

二级参考文献22

  • 1李红蕾,凌捷,徐少强.关于图象质量评价指标PSNR的注记[J].广东工业大学学报,2004,21(3):74-78. 被引量:35
  • 2陈强,卓力,沈兰荪.基于感兴趣区的MPEG-4FGS增强层码率分配算法[J].电子与信息学报,2005,27(3):402-406. 被引量:6
  • 3陈锻生,刘政凯.肤色检测技术综述[J].计算机学报,2006,29(2):194-207. 被引量:118
  • 4徐战武,朱淼良.肤色检测最优空间[J].计算机辅助设计与图形学学报,2006,18(9):1350-1356. 被引量:15
  • 5Tsukamoto A, Lee C W, Tsuji S. Detection and tracking of human face with synthesized templates [A]. In: Proc. Asian Conf. on Computer Vision [C], Osaka, Japan: Kokichi SUGIHARA, 1993:183-186.
  • 6Yang Guang-zheng, Thomas S H. Human face detection in a complex background[J]. Pattern Recognition,1994,27(1):53-63.
  • 7Shihong Jeng, Hongyuan Mark Liao, Chinchuan Han et al. An efficient approach for facial feature detection using geometrical face model[A], In: Proc. 13^th Int. Conf. on Pattern Recognition [C], Vienna, Austria: IEEE Computer Society Press, 1996:426-430.
  • 8Henry A R, Takeo Kanade. Neural network based face detection [J]. IEEE Transactions on Pattern analysis and Machine Intelligence, 1998,20(1):23-38.
  • 9WASTON A B,HU J,MCGOWAN J F.Digital video quality metric based on human vision[J].Journal of Electronic Imaging,2001,10(1):20-29.
  • 10SIMIK R.Improvement of Watson's DVQ metric[J].Radio Engineering,2004,13 (1):13-16.

共引文献51

同被引文献46

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部