期刊文献+

一种基于相对熵阈值分割的改进算法 被引量:5

Improved Relative Entropy-based Thresholding Algorithm for Segmentation
在线阅读 下载PDF
导出
摘要 在对基于相对熵的阈值分割算法(relative entropy-based thresholding)深入研究的基础上,针对目前相应算法(传统算法及最新的改进算法)抗噪性能不强的缺陷,提出了一种新的改进算法。新方法引入了一种新的自适应中值滤波,采用非线性滤波后的中心点及其邻域象素构建共生矩阵,不仅有效地降低了噪声的干扰,而且对不含噪图像和加噪图像都能取得很好的分割结果,在多幅经典图像的分割中取得了满意的效果,实验效果优于对比算法。 On the basis of in-depth study of the relative entropy-based thresholding segmentation algorithm in grey-scale images, contrapose to the deficiencies of the corresponding algorithm at the moment (traditional algorithms and the latest improved algorithm) which do not have a strong anti-noise performance, a new improved algorithm was proposed. The proposed method imports a new adaptive median filter, uses the center point and its 8-adjacent pixels after nonlinear filtering to construct co-occurrence matrix, and get the best threshold via minimizing the relative entropy between an image and its thresholded image. It takes on stronger anti-noise ability, and can achiev very good results of the segmentation for both noise-free images and noisy image. Segmentation in a number of classic images has obtained satisfactory results. Experimental results show that the proposed method performs better than the contrastive methods.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第12期3731-3733,共3页 Journal of System Simulation
关键词 相对熵 阈值向量 图像分割 共生矩阵 relative entropy threshold vector image segmentation co-occurrence matrix
作者简介 胡勇(1972-),男,安徽霍邱人,博士生,研究方向为图像处理、模式识别与机器学习。
  • 相关文献

参考文献9

  • 1Kittler J, lllingworth J. Minimum Error Thresholding [J]. Pattern Recognition (S0031-3203), 1986, 19(1): 41-47.
  • 2Pal N R, Pal S K. Image Model, Poisson Distribution and Object Extraction [J]. International Journal of Pattern Recognition and Artificial Intelligence (S0218-0014), 1991, 5(3): 459-483.
  • 3Li C H, Lee C K. Minimum Cross Entropy Thresholding [J]. Pattern Recognition (S0031-3203 ), 1993, 26(4): 617-625.
  • 4C-I Chang, K Chert, J Wang, M LG Althouse. A Relative Entropy-Based Approach to Image Thresholding [J]. Pattern Recognition (S0031-3203), 1994, 27(9): 1275-1289.
  • 5Lee S S, Homg S-J, Tsai H-R. Entropy Thresholding and Its Parallel Algorithm on the Reconfigurable Array of Processors with Wide Bus Networks [J]. IEEE Transactions on Image Processing (S 1057-7149), 1999, 8(9): 1229-1242.
  • 6Ramac L C, Varshney P K. Image Thresholding Based on Ali-Silvey Distance Measures [J]. Pattern Recognition (S0031-3203), 1997, 30(7): 1161-1174.
  • 7Lee S-K, Lo C-S, Wang C-M, Chung P-C. A Computer-Aided Design Mammography Screening System for Detection And Classification Of Microcalcifications [J]. International Journal of Medical Informatics (S 1386-5056), 2000, 60(1): 29-57.
  • 8C-I Chang, Y Du, J Wang, S-M Guo, P D Thouin. Survey and Comparative Analysis of Entropy and Relative Entropy Thresholding Techniques [J]. Vision, Image and Signal Processing, IEE Proceedings, (S 1350-245X), 2006, 153(6): 837-850.
  • 9I El-Feghi, N Adem. Improved Co-occurrence Matrix as a Feature Space for Relative Entropy-based Image Thresholding [C]// Proceedings of the Computer Graphics, Imaging and Visualization, 10.1109/CGIV.2007.49, 314-320.

同被引文献56

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部