期刊文献+

基于复合混合物理论的热-水力-力学污染物输运模型 被引量:2

A Thermo-Hydro-Mechanical Contaminant Transport Model Based on Hybrid Mixture Theory
在线阅读 下载PDF
导出
摘要 污染物在饱和可变形多孔介质中的输运问题属于多场耦合的范畴.为模拟含N种组分的液相污染物在可压缩固相多孔介质中的输运过程,在复合混合物理论的基础上将体积分数作为内变量引入,提出并建立了可压缩多孔介质中多组分污染物热-水力-力学耦合输运问题的热力学框架.将体积分数看作独立变量用于描述介质的微观结构,并形成动力相容条件来描述由多组分流体饱和的可压缩多孔介质界面处应力突变的微观力学机制.根据近平衡态理论以及线性化方法得到基于上述理论框架的线性化热-水力-力学耦合污染物输运模型.所提出的模型是在公理系统基础上建立的,输运过程中的渗流和扩散过程最终可表示为与相的密度梯度、组分浓度梯度、体积分数梯度及温度梯度有关的形式,实现了多种因素的耦合. Contaminant transport in saturated deforming porous media is a multi-field coupling problem. In this paper a contaminant transport system is modeled as a superposition of one compressible porous solid and fluid phase which contains N components. The thermodynamic framework of thermohydro-mechanical contaminant transport model is developed based on hybrid mixture theory. Volume fraction as an independent state variable represents the microstructure of porous media and the dynamic compatibility condition is introduced in the model to describe the microscopic mechanical constrain on the pressure jump across interface of the compressible porous media. According to the near equilibrium theory and a formal linearization of above framework, a linear thermo-hydro-mechanical model of multi-component contaminant transport is obtained. The model established in this paper is developed from an axiomic system and couples multiple influencing factors. Seepage and diffusion process are relevant to gradient of phase density, component concentration, volume fraction and temperature eventually.
作者 黄璐 赵成刚
出处 《北京交通大学学报》 CAS CSCD 北大核心 2009年第3期93-98,共6页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 国家自然科学基金资助项目(50778013)
关键词 污染物输运 复合混合物理论 多组分流体 多孔弹性 热力学框架 contaminant transport hybrid mixture theory multicomponent poroelasticity thermodynamic framework
作者简介 黄璐(1982-),女,四川宜宾人,博士生.email:05115258@bjtu.edu.cn. 赵成刚(1955-),男,黑龙江哈尔滨人,教授,博士,博士生导师.
  • 相关文献

参考文献25

  • 1Bowen R M. Compressible Porous Media Models by Use of the Theory of Mixtures[J]. International Journal of Engineering Science, 1982,20 : 697 - 735.
  • 2Bowen R M. Incompressible Porous Media Models by Use of the Theory of Mixtures[J]. International Journal of Engineering Science, 1980, 18 : 1129 - 1148.
  • 3De Boer R. The Thermodynamic Structure and Constitutive Equ-Ations for Fluid-Saturates Compressible and Incompressible Elastic Porous Sohds[J]. International Journal of Solids and Structures, 1998,35(34/35) :4557 - 4573.
  • 4De Boer R, Didwania A K. Saturated Elastic Porous Solids: Incompressible, Compressible and Hybrid Binary Models[J]. Transport in Porous Media, 2001,45:425 - 445.
  • 5李希 郭尚平.渗流过程的混合物理论[J].中国科学:A辑,1988,3:265-274.
  • 6Bear J, Bachmat Y. Introduction to Modeling of Transport Ph-Enomena in Porous Media[ M]. Kluwer Academic Publish, 1990.
  • 7Achanta S, Cushman J H. On Multi-component, Multi- Phase Thermomechanics with Interfaces [ J]. International Journal of Engineering Science, 1994, 32 ( 11 ) : 1717 - 1738.
  • 8Hassanizadeh S M. Derivation of Basic Equations of Mass Transport in Porous Media, Part 2. Generalized and Fick' s Law[J]. Advances in Water Resources, 1986,9:207- 222.
  • 9Bennethum L S, Cushman J H. Clarifying Mixture Theory and the Macroscale Chemical Potential for Porous Media [J]. International Journal of Engineering Science, 1996, 34(14) : 1611 - 1621.
  • 10Bennethum L S, Cushman J H. Muhiscal, Hybrid Mixture Theory for Swelling Systems-I: Balance Laws[ J]. International Journal of Engineering Science, 1996, 34 (2) : 125 - 145.

共引文献1

同被引文献31

  • 1何俊,施建勇,廖智强,朱宁.膨润土中离子扩散特征试验研究[J].岩土力学,2007,28(4):831-835. 被引量:17
  • 2SMITH D W. One-dimensional contaminant transport through a deforming porous medium: theory and a solution for a quasi-steady-state problem[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24:693 - 722.
  • 3PETERS G P, SMITH D W. Solute transport through a deforming porous medium[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26:683 - 717.
  • 4ALSHAWABKEH A N, RAHBAR N, SHEAHAN T, et al. Volume change effects on solute transport in clay under consolidation[C]// Advances in Geotechnical Engineering with Emphasis on Dams, Highway Materials, and Soil Improvement (GPP No. 1) Geo J ordon Conference, 2004:105 - 115.
  • 5ALSHAWABKEH A N, RAHBAR N, SHEAHAN T. A model for contaminant mass flux in capped sediment under consolidation[J]. Journal of Contaminant Hydrology, 2005, 78: 147- 165.
  • 6ALSHAWABKEH A N, RAHBAR N. Parametric study of one- dimensional solute transport in deformable porous media[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132:1001 - 1010.
  • 7KACZMAREK M, HUECKEL T, CHAWLA V, et al. Transport through a clay barrier with the contaminant concentration dependent permeability[J]. Transport in Porous Media, 1997, 29:159 - 178.
  • 8HASSANIZADEH S M. Derivation of basic equations of mass transport in porous media: part 2. generalized and Fick's law[J]. Advances in Water Resources, 1986, 9:207 - 222.
  • 9ACHANTA S, CUSHMAN J H. On multicomonent, multiphase thermomechanics with interfaces[J]. Int J Eng Sci, 1994, 32(11): 1717 - 1738.
  • 10PASSMAN S T. A theory of multiphase mixtures[M]// TRUSDELL C, ed. Rational Thermodynamics. New York: Springer- Verlag, 1984:286 - 325'.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部