期刊文献+

基于排列的微粒群优化算法

Algorithm of paricle swarm optimization based on rank
在线阅读 下载PDF
导出
摘要 针对基本微粒群优化算法(PSO)存在陷入局部最优的问题,提出一种基于排列的改进微粒群算法(RPSO)。该算法对每次迭代过程中的个体历史最优解按照适应值的优劣顺序排列,然后选择若干个较优的个体历史最优解作为候选解,再以概率方式在候选解中确定群体历史最优解的位置。RPSO算法使基本PSO算法易于陷入局部最优的问题,得到有效的缓解。为了分析算法的性能,对几种典型的非线性函数进行了测试。实验结果表明,RPSO算法比基本PSO算法具有更好的寻优能力。 A rank-basedparticle swarm optimization (RPSO) algorithm is proposed to overcome the shortcoming of particle swarm optimization (PSO) algorithm, which is easy to fall into local optima. In the proposed algorithm, the best previous solutions of all particles from each iteration are selected and ranked according to their fitness. And the solutions with higher fitness are chosen as candidates for the possible solutions. The optimum solution, and thus its location, was then determined by choosing among the candidates with a probabilistic method. The performance of the new algorithm is compared with the PSO method when applied to benchmark nonlinear programming problems. The new approach is seen to perform better in fmding the global optimum than PSO.
出处 《计算机工程与设计》 CSCD 北大核心 2009年第10期2444-2446,共3页 Computer Engineering and Design
关键词 微粒群优化 全局优化 排列 轮盘赌选择 群体智能 particle swarm optimization global optimization rank roulette selection swarm intelligence
作者简介 潘章明(1969-),男,安徽芜湖人,硕士,讲师,研究方向为智能计算和模式识别; 王占刚(1977-),博士,讲师; 王泽(1968-),硕士,讲师。E-mail:panzhangming@163.com
  • 相关文献

参考文献10

  • 1Margarita Reyes-Sierra,Carlos A Coello Coello.Multi-objective particle swarm optimizers:A survey of the state-of-the-art[J].International Journal of Computational Intelligence Research, 2006,2(3):287-308.
  • 2Van den Bergh F,Engelbrecht A EA study of particle swarm optimization particle trajectories [J]. Information Sciences, 2006, 176(8):937-971.
  • 3Liu B,Wang L,Jin Y H.An effective PSO-based memetic algorithm for flow shop scheduling[J].IEEE Trans on Systems,Man and Cybernetics,2007,37( 1): 18-27.
  • 4Omran M G, Salman A, Engelbrecht A P. Dynamic clustering using particle swarm optimization with application in segmentation [J]. Pattern Analysis and Applications, 2005,8 (4): 332-344.
  • 5Parsopoulos K E,Vrahatis M N.Recent approaches to global optimization problems through particle swarm optimization [J]. Natural Computing,2002,1 (2-3):235-306.
  • 6陈国初,俞金寿.变邻域宽度的爬山微粒群优化算法及其应用[J].化工学报,2005,56(10):1928-1931. 被引量:3
  • 7姜海明,谢康,王亚非.按概率突跳的改进微粒群优化算法[J].吉林大学学报(工学版),2007,37(1):141-145. 被引量:6
  • 8王元元,曾建潮,谭瑛.多种群协同进化的微粒群算法[J].计算机工程与设计,2007,28(15):3661-3664. 被引量:10
  • 9乐逸祥,周磊山,乐群星.微粒群算法的可视化仿真及算法改进[J].系统仿真学报,2007,19(6):1212-1216. 被引量:6
  • 10Alex A Freitas.Data mining and knowledge discovery with evolutionary atgorithms[M].Berlin:Springer,2002.

二级参考文献34

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部