期刊文献+

阳离子交换型连续床用超大孔晶胶的制备 被引量:1

Preparation of Supermacroporous Cryogel Used in Cation-Exchange Monolith
在线阅读 下载PDF
导出
摘要 采用原位接枝法,将3-烯丙氧基-2-羟基-1-丙磺酸钠(AHPSA)接枝到聚丙烯酰胺基晶胶基质孔隙内表面,制备得到了阳离子交换型连续床用的带磺酸基超大孔晶胶介质。通过脉冲示踪法测量停留时间分布(RTD),得到了晶胶介质的理论等板高度(HETP)。通过测量一定压差下流经晶胶床柱的液量,得到晶胶介质的渗透率。用溶菌酶作为模型蛋白测量晶胶介质的吸附容量。考察了单体浓度、接枝反应时间等反应条件对晶胶介质的HETP、渗透率、蛋白质吸附容量等性能的影响。结果表明:接枝AHPSA的阳离子交换晶胶介质的HETP基本不受接枝反应时间和单体浓度的影响,其渗透率随接枝反应时间增大略有减小,其对溶菌酶的吸附容量与接枝单体的浓度成正比,受接枝反应时间的影响较小。 A novel supermacroporous cryogel with sulfo binding groups used in cation-exchange monolith was prepared by in-situ grafting of 3-allyloxy-2-hydroxy-l-propanesulfonic acid sodium salt (AHPSA) onto the pore surfaces of polyacrylamide-based cryogel. The height equivalent to a theoretical plate (HETP) of the cryogel beds was obtained by measuring residence time distributions (RTDs) with tracer pulse-response method. The hydraulic permeability was calculated by measuring the flow rate of deionized water passing through the cryogel bed at fixed hydrostatic pressure drops. Lysozyme was employed as the model protein to reveal the protein binding capacity of the cryogel bed. The effects of AHPSA concentration and reaction time on HETP, hydraulic permeability and protein binding capacity were investigated. The results show that the HETP is not influenced by the graft reaction time and monomer concentration, while the permeability slightly decreases with the increase of graft reaction time. The binding capacity of lysozyme increases linearly with the increase of the concentration of AHPSA and has no obvious change under different graft reaction times.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2009年第3期480-485,共6页 Journal of Chemical Engineering of Chinese Universities
基金 浙江省自然科学基金资助项目(Y405054)
关键词 生物分离 超大孔连续床 原位接枝 晶胶 阳离子交换 bioseparation supermacroporous monolith in-situ graft-polymerization cryogel cation-exchange
作者简介 作者简介:王良华(1972-2008),男,浙江平湖人,浙江工业大学副教授,浙江大学博士生。 通讯联系人:姚善泾,E-mall:yaosj@zjuedu.cn
  • 相关文献

参考文献17

  • 1吕淼华,林东强,赵文婷,姚善泾,朱自强.含有生物质固体颗粒进料时的扩张床稳定性评价[J].高校化学工程学报,2004,18(6):751-755. 被引量:1
  • 2Aevidsson P,Plieva F M,Savina I N et al.Chromatography of microbial cells using continuous supermacroporous affinity and ion-exchange columns[J].J Chromatogr A,2002,977(1):27-38
  • 3Arvidsson P,Plieva F M,Lozinsky V I.Direct chromatographic capture of enzyme from crude homogenate using immobilized metal affinity chromatography on a continuous supermacroporous adsorbent[J].J Chromatogr A,2003,986(2):275-290.
  • 4Kumar A,Plieva F M,Galaev I Y.Affinity fractionation oflymphocytes using a monolithic cryogel[J].J Immunol Methods,2003,283(1-2):185-194.
  • 5Kumar A,Bansal V,Andersson Jet al.Supermacroporous cryogel matrix for integrated protein isolation Immobilized metal affinity chromatographic purification of urokinase from cell culture broth of a human kidney cell line[.I].J Chromatogr A,2006,1103(1):35-42.
  • 6Persson P,Baybak O,Plieva F et al.Characterization of a continuous supermacroporous monolothic matrix for chromatographic separation of large bioparticles[J].Biotechnol Bioeng,2004,88(2):224-236.
  • 7Dainiak M B,Kumara A,Pileva F Met al.Integrated isolation of antibody fragments from microbial cell culture fluids using supermacroporous cryogels[J].J Chromatogr A,2004,1045(1-2):93-98.
  • 8Williams S L,Eccleston M E,Slater N K H.Affinity capture of a biotinylated retrovirus on macroporous monolithic adsorbents:Towards a rapid single-step purification process[J].Biotechnol Bioeng,2005,89(7):783-787.
  • 9Yao K J,Shen S C,Yun J X et al.Protein adsorption in supermacroporous cryogeis with embedded nanoparticles[J].Biochem Eng J,2007,36(2):139-146.
  • 10He X J,Yao K J,Shen S C et al.Freezing characteristics of acrylamide-based aqueous solution used for the preparation of supermacroporous cryogels via cryo-copolymerization[J].Chem Eng Sci,2007,62(5):1334-1342.

二级参考文献8

  • 1Hjorth R, Leijon P, Barnfield-Frej AK, Jagersten C. Expanded bed adsorption [A]. In: Subramanian G, ed. Bioseparation and Bioprocessing 1 [K]. Weinheim: Wiley-VCH, 1998.
  • 2Thommes J. Fluidized bed adsorption as a primary recovery step in protein purification [J]. Adv Biochem Eng, 1997, 58: 185-230.
  • 3Lin D Q, Fernández-Lahore H M, Kula M R, Thommes J. Minimising biomass/absorbent interactions in expanded bed adsorption processes--a methodological design approach [J]. Bioseparation, 2001, 10: 7-19.
  • 4Fernández-Lahore H M, Kleef R, Kula M R, Thommes J. The influence of complex biological feedstock on the fluidisation and bed stability in expanded bed adsorption [J]. Biotechol Bioeng, 1999, 64: 484-496.
  • 5Fernandez-Lahore H M, Lin D Q, Hubbuch J J, Kula M R, Thommes J. The use of ion-selective electrode for evaluating residence time distributions in expanded bed adsorption systems [J]. Biotechnol Progress, 2001, 17: 1128-1136.
  • 6Anspach F B, Curbelo D, Hartmann R, Garke G, Deckwer W D. Expanded-bed chromatography in primary protein purification [J]. J Chromatogr A, 1999, 865: 129-144.
  • 7Feuser J, Walter J, Kula M-R, Thommes J. Cell-adsorbent interactions in expanded bed adsorption of proteins [J]. Bioseparation, 1999, 8: 99-109.
  • 8胡洪波,林东强,叶子坚,梅乐和,姚善泾,朱自强.膨胀床的膨胀特征和流体混合性能[J].高校化学工程学报,2000,14(2):139-144. 被引量:15

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部