期刊文献+

基于颜色特征的棉田中铁苋菜识别技术 被引量:23

Copperleaf Herb Detection from Cotton Field Based on Color Feature
在线阅读 下载PDF
导出
摘要 基于不同的颜色特征,利用机器视觉技术自动识别棉田中铁苋菜。分别对棉花和杂草铁苋菜的色差法(R-G,R-B,G-B)、超绿法(2G-R-B)、色度法(H)等5种特征图像进行对比,确定色度法利用最大方差进行二值化的效果最佳。创建与二值图像相对应的0、1双精度型矩阵,并分别与R、G、B三基色分量图相乘,获取前景是R、G、B三基色分量图,背景是黑色的灰度图像。分析棉花、铁苋菜前景R、G、B的标准差,确定R的标准差与B的标准差差值小于5作为判断铁苋菜的阈值。识别结果表明,棉花的判断准确率为71.4%,铁苋菜的判断准确率为92.9%,总体准确率为82.1%。 Automatic recognition research on distinguishing copperleat herb from cotton was aevelopea by machine vision based on the different color features. The binary images were obtained by segmenting five feature images, which were the color-difference methods (R -G, R -B, G -B), the supergreen' s method (2G - R - B ), and chromatometry (H) respectively. The chromatometry feature images segmented by Otsu's method could achieve better results by comparing. The double precision matrix as 0, 1 was created with the corresponding binary image, and multiplied by the component plans of R, G and B respectively. The gray images were gained. Their foregrounds were the component plans of R, G and B and their backgrounds were black. The standard deviations of R, G and B in the foregrounds of the cotton and the copperleaf herb images were analyzed. The threshold value for the judgment of the copperleaf herb, which was the margin between R's standard deviation and B's standard deviation less than 5, was determined. The identifiable results show that the recognition rates of the cotton and the copperleaf herb are 71.4% and 92.9% respectively, and the overall recognition rate is 82.1%.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2009年第5期149-152,共4页 Transactions of the Chinese Society for Agricultural Machinery
基金 镇江市农业科技计划资助项目(GJ2008008) 江苏大学现代农业装备与技术省部共建教育部重点实验室开放基金资助项目(NZ200708) 江苏省博士后科研资助计划(0601014B)
关键词 棉花 杂草识别 机器视觉 颜色特征 标准差 Cotton, Weed recognition, Machine vision, Color feature, Standard deviation
作者简介 陈树人.教授,博士后,主要从事精确农业研究,E—mail:srchen@ujs.edu.cn
  • 相关文献

参考文献13

  • 1Woebbecke D M, Meyer G E, Von Bargen K, et al. Color indices for weed identification under various soil, residue, and lighting conditions [ J ]. Transactions of the ASAE, 1995, 38 ( 1 ) : 259 -- 269.
  • 2相阿荣,王一鸣.利用色度法识别杂草和土壤背景物[J].中国农业大学学报,2000,5(4):98-100. 被引量:14
  • 3Chun-Chieh Yang, Shiv O Prasher, Jacques-Andre Landry, et al. A vegetation localization algorithm for precision farming [J]. Biosystems Engineering, 2002, 81(2) : 137-- 146.
  • 4Woebbecke D M, Meyer G E, Von Bargen K, et al. Shape feature for identifying young weeds using image analysis [J]. Transactions of the ASAE, 1995, 38(1) :271 --281.
  • 5Yonekawa S, Sakai N, Kitani O. Identification of idealized leaf types using simple dimensionless shape factors by imaged analysis[J]. Transactions of the ASAE, 1996, 39(4) : 1 525-- 1 533.
  • 6纪寿文,王荣本,陈佳娟,赵学笃.应用计算机图像处理技术识别玉米苗期田间杂草的研究[J].农业工程学报,2001,17(2):154-156. 被引量:80
  • 7Aitkenhead M J, Daigetty I A, Mullins C E, et al. Weed and crop discrimination using image analysis and artificial intelligence methods [J]. Computers and Electronics in Agriculture, 2003, 39(3) : 157-- 171.
  • 8Sφgaard H T. Weed classification by active shape models [J]. Biosystems Engineering, 2005, 91(3):271--281.
  • 9龙满生,何东健.玉米苗期杂草的计算机识别技术研究[J].农业工程学报,2007,23(7):139-144. 被引量:55
  • 10毛文华 ,王一鸣 ,张小超 ,王月青 .基于机器视觉的苗期杂草实时分割算法[J].农业机械学报,2005,36(1):83-86. 被引量:44

二级参考文献64

共引文献221

同被引文献252

引证文献23

二级引证文献354

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部