期刊文献+

声波在有裂纹的固体中的非经典非线性传播 被引量:14

Nonclassical nonlinear sound transmission in solid with cracks
在线阅读 下载PDF
导出
摘要 固体材料的无损检测是一个非常重要的课题,带裂纹的固体材料显示非经典非线性声学现象,本文对此现象进行了实验和理论研究。从实验上一维观察到此现象,发现奇次谐波振幅与基波振幅呈平方关系,与理论预计基本吻合;理论上从二维的角度数值模拟了声波在有损耗的带裂纹的固体中的声传播,并讨论了经典非线性和非经典非线性对声传播的影响,发现裂纹的贡献主要体现在非经典非线性上。分析了样品中裂纹的宽度和位置与非线性声参数的关系,在靠近样品中心的两个对称区域以及距离声源较近点,非线性声参数对样品的破损较为敏感,而在中央和距声源最远端敏感性较低;随着裂纹宽度的扩大,非线性声参数也开始变大,但在破损区域蔓延到棒边缘之前,有下降的趋势。 Non-destructive Testing (NDT) for solid is a top subject. Nonclassical nonlinear acoustic phenomena are shown in solid with cracks. In this paper, the propagation of sound wave and the nonclassical nonlinear acoustic properties in solid were studied theoretically and experimentally. The nonclassical nonlinear phenomena were observed experimentally in one dimension, the quadric relationships between the amplitude of odd harmonics and that of funda- mental frequency were found, which were in agreement with the theoretical prediction. The sound transmissions through solid with dissipation and crack were simulated in two dimensions, the influence of classical nonlinearity and nonclas- sical nonlinearity on the sound propagation was discussed. And the crack was mainly contributed to the nonclassical nonlinearity. The relationship between the nonlinear parameter and the position and width of the crack was analyzed. The nonlinearity parameter was sensitive when the crack was at the symmetrical position near the center of the bar or near the source. However, there was no sensitivity to crack at the center of the bar or far away from the source. With the increase of width of the crack, the nonlinearity parameter also increased, however, it decreased before the crack was extended to the edge of the bar.
出处 《声学学报》 EI CSCD 北大核心 2009年第3期234-241,共8页 Acta Acustica
基金 国家自然科学基金(10674066) 中国科学院声场声信息国家重点实验室资助项目。
关键词 非线性传播 裂纹宽度 固体材料 非经典 声波 无损检测 声学现象 奇次谐波 Acoustic properties Acoustic wave transmission Architectural acoustics Nondestructive examination Transmissions
  • 相关文献

参考文献16

  • 1Landau L D, Lifshitz E M. Theory of elasticity. Oxford: Pergamon, 1986
  • 2K.Van Den Abeele. Elastic pulsed wave propagation in media with second-or high order non-linearity. J. Acoust. Soc. Am., 1996; 90(6): 3334--3345
  • 3Delsanto P P. Connection Machine simulation of ultrasonic wave propagation in materials. I: the one-dimensional case. Wave Motion, 1992; 16(1): 65--80
  • 4Delsanto P P. Connection machine simulation of ultrasonic wave propagation in materials. Ⅱ: the two-dimensional case. Wave Motion, 1994; 20(4): 295-314
  • 5Ostrovsky L, Johnson P A. Dynamic nonlinear elasticity in geomaterials. Riv. Nuovo Cimento Ital. Phys. Soc., 2001;24(7): 1-46
  • 6Preisach F. Uber die magnetische Nachwlrkung, ("About the magnetic after effect") Z.Phys. 1935; 94(5-6): 277-302
  • 7Mayergoyz I D. Hysteresis models from the mathematical and control theory points of view. J. Appl. Phys., 1985; 57(8): 3803--3805
  • 8McCall K R, Guyer R. A. Equation of state and wave propagation in hysteretic nonlinear materials. Journal of Geophysical Research, 1994; 99(B12): 23887-23897
  • 9McCall K R, Guyer R A. A new theoretical paradigm to describe hysteresis, discrete memory and nonlinear elastic wave propagation in rock. Nonlinear Processes in Geophysical 1996:89-101
  • 10Koen Van Den Abeele. Multi-mode nonlinear resonance ultrasound spectroscopy for defect imaging: An analytical approach for the one-dimensional case. J. Acoust. Soc. Am., 2007; 122(1): 73--90

同被引文献142

引证文献14

二级引证文献180

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部