期刊文献+

锂离子电池正极材料Li_3V_(2-x)Ni_x(PO_4)_3的制备及其性能 被引量:2

Preparation and performance of Li_3V_(2-x)Ni_x(PO_4)_3 cathode material for lithium-ion batteries
在线阅读 下载PDF
导出
摘要 采用溶胶-凝胶法,以Li2CO3、V2O5、NH4H2PO4、柠檬酸、Ni(OH)2·H2O为原料成功合成了正极材料Li3V2(PO4)3及其掺Ni化合物。Rietveld精修结果显示在Ni掺杂量不超过0.15时,样品均为纯相。X射线衍射(XRD)结果给出,随着镍掺杂量的增加,a轴和c轴及晶胞体积都有所下降。对样品Li3V2-xNix(PO4)3电导率的测试结果显示,Ni掺杂后样品的电子导电性均有所提高。室温下在0.1C和3C充放电条件下,镍掺杂Li3V1.95Ni0.05(PO4)3正极材料首次放电比容量分别达到177.2mAh/g和136.6mAh/g,在3C倍率下100次循环后容量保持率达到94.2%,这些性能都优于未掺杂样品和其他镍掺杂量的样品。 Ni-doped Li3V2-xNix (PO4)3 compounds were prepared successfully by sol-gel process with Li2CO3, V2O5. NH4H2PO4, citric acid, and Ni(OH)2·H2O as the reactant. The results of Rietveld refinement analysis indicate that single-phase Li3V2-xNix(PO4)3 with monoclinic structure can be obtained for x 〈0.15. X-ray photoelectron spectroscopy analysis suggests that a- axis, c-axis and the cell volume decrease with the increasing of Ni content. There is a large increase in electrical conductivity even with Ni doping. Ni doped Li3V1.95Ni0.05(PO4)3 can deliver the initial capacity of 177.2 mAh/g and 136.6 mAh/g at 0.1 C and 3 C respectively and 94.2% capacity retention can still be held after 100 cycles at 3 C rate.
出处 《电源技术》 CAS CSCD 北大核心 2009年第5期401-405,共5页 Chinese Journal of Power Sources
基金 国家自然科学基金(50772039) 广东省自然科学基金重点项目(07118058)
关键词 锂离子电池 正极材料 LI3V2(PO4)3 Ni掺杂 lithium-ion batteries cathode material Li3V2(PO4)3 Ni-doped
作者简介 何智峰(1983-),男,湖南省人,硕士研究生,主要研究方向为锂离子电池正极材料。
  • 相关文献

参考文献16

  • 1WHITTINGHAM M S. Lithium batteries and cathode materials[J]. Chem Rev, 2004, 104(10): 4271-4301.
  • 2LIM S C, VAUGHEY T J, HARRISON W T A, et al. Redox transformations of simple vanadium phosphates: the synthesis of LiVOPO4[J]. Solid State Ionics, 1996, 84: 219-226.
  • 3LIGHTFOOT P,CHEETHAM A K, SLEIGHT A W. Structure of manganese (3+) phosphate monohydrate by synchrotron x-ray powder diffraction[J]. Inorg Chem, 1987, 26: 3544-3547.
  • 4YANG S,ZAVALIJ P Y,WHITTINGHAM M S. Hydrothermal synthesis of lithium iron phosphate cathodes[J]. Electrochem Commun, 2001, 3: 505-508.
  • 5SATO M, TAJIMI S, OKAWA H, et al. Preparation of iron phosphate cathode material of Li3Fe2(PO4)3 by hydrothermal reaction and thermal decomposition processes[J]. Solid State Ionics, 2002, 152: 247-251.
  • 6YIN S C, GRONDEY H, STROBEL P, et al. Electrochemical property: structure relationships in monoclinic Li3-yV2(PO4)3[J]. J Am Chem Soc, 2003, 125:10402-10411.
  • 7YIN S C, STROBEL P S, GRONDEY H, et al. Li2.5V2(PO4)3: A room-temperature analogue to the fast-ion conducting high-temperature-phase of Li3V2(PO4)3[J]. Chem Mater, 2004, 16: 1456-1465.
  • 8SATO M, OHKAWA H, YOSHIDA K, et al. Enhancement of discharge capacity of Li3V2(PO4)3 by stabilizing the orthorhombic phase at room temperature[J]. Solid State Ionics, 2000, 135: 137-142.
  • 9MORGAN D, CEDER G, SAIDI M Y, et al. Experimental and computational study of the structure and electrochemical properties of LixM2(PO4)3 compounds with the monoclinic and rhombohedral structure[J]. Chem Mater, 2002, 14: 4684-4693.
  • 10REN M M, ZHOU Z, LI Y Z, et al. Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries[J]. J Power Sources, 2006, 162: 1357-1362.

二级参考文献18

共引文献20

同被引文献26

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部