摘要
粗糙集理论在对不精确、不确定和不完全的数据进行分类分析和知识获取中具有突出的优势。从粒度粗细的角度动态分析了粗糙集的边界域,结合属性关联的理论定义了动态粒度商的概念。依据粒度粗细的理论,提出了一种新的属性约简算法。采用动态粒度商法选择最优归约集,抛弃了传统的先求核心,再选择最优归约集的算法。实例研究证明提出的粒度计算方法是可靠有效的,为进一步研究知识的粒度计算提供了可行的方法。
Rough Set (RS) theory is an effective approach of imprecision, vagueness and incompleteness in classification analysis and knowledge discovery. Rough set based on boundary region was dynamically analyzed from the coarser degree of granularity. Dynamic quotient granularity was defined by the principle of attribute connection, and a new attribute reduction algorithm based on the coarser degree of granularity principle was proposed. The optimal reduction set can be selected from all reduction set with algorithm for dynamic quotient granularity. It abandons the tradition to ask the core first, and then chooses the optimal reduction set. The validity of proposed granularity computing algorithm is proved by the application of .practical database. Moreover, it can be used for granularity computation of knowledge.
出处
《计算机应用》
CSCD
北大核心
2009年第6期1608-1611,共4页
journal of Computer Applications
关键词
粗糙集
粒度计算
决策系统
粒度商
动态粒度商
Rough Set (RS)
granularity computing
decision system
Quotient Granularity (QG)
dynamic QG
作者简介
周军(1974-),男,安徽肥西人,硕士研究生,主要研究方向:粗糙集理论、数据挖掘;
林庆(1962-),男,福建厦门人,副教授,博士研究生,主要研究方向:粗糙集理论、数据挖掘;
胡瑞瑞(1982-),女,河南许昌人,硕士研究生,主要研究方向:模式识别、智能系统。 fxx2901 @ 163. com