摘要
柱坐标系下Taylor-Couette流存在形如u=uφ(r)eφ,p=p(r)的定态解。对于两无限长同轴旋转圆台的情形,应用反证法证明了不存在形如u=ur(r)er+uφ(r)eφ+uz(r)ez,p=p(r)这种更一般的定态解。随后在窄缝的条件下忽略圆台上下两端边界的影响,采用数值模拟方法并统计出沿z轴切面上的平均压力p是与z有关的函数,从而验证了这种解的不存在性。
Taylor-Couette flow allows a steady solution of the form u = uφ( γ )eφ, p = p (γ) in cylindrical coordinates. In this paper, the case of two infinite rotating conical cylinders is considered and using the method of proof by contradiction it is proved mathematically that there does not exist a steady solution of the more general form u = uγ(γ)eγ + uφ( γ )eφ + uz (γ)ez, p = p (γ). The non-existence of this steady solution is also verified by numerical simulation through statistical results that show that the average pressure is a function of the coordinate along the z direction, given a small gap and neglecting the effect of the top and bottom boundaries.
出处
《北京化工大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第3期117-120,共4页
Journal of Beijing University of Chemical Technology(Natural Science Edition)
作者简介
男,1986年生,硕士生
通讯联系人 E—mail:xulx@mail.butt.edu.cn