摘要
目的为改进小波神经网络算法的缺陷。方法当网络的输出层节点的输出值与1之差或输出层节点输出值小于等于设定的阈值,使用变系数法调整输出层的误差,然后再利用遗传算法优化小波网络的参数。结果在齿轮箱故障诊断中,变系数法有效地防止了误差无法逆向传播下去,使网络失去学习能力。然而,通过遗传算法的全局优化搜索能力得到网络的最优参数,从而避免了网络陷入局部最小。结论提出的基于遗传算法的小波神经网络即提高网络的诊断精度,又加快了其收敛速度。
Aim To improve the flaw of WNN. Methods Variable-coefficient method is used to adjust the output layer's error of WNN, when the values of output layer nodes are less than or equal to threshold, and genetic algorithm is adopted to get the best parameters of WNN. Results In the process of gearbox fault diagnosis, the variable-coefficient method effectively prevents the influence that output layer's error can not be transmitted back to the hidden layers and the WNN loses the ability of learning. By the performance of global optimum searching of the genetic algorithm, the network can avoid falling into the local minimums in studying. Conclusion The novel algorithm of WNN not only improves its fault diagnosis precision, but also accelerates rate of convergence.
出处
《西北大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第2期203-207,共5页
Journal of Northwest University(Natural Science Edition)
基金
陕西省自然科学基金资助项目(98X11)
陕西省教育厅重点科研计划基金资助项目(00JK015)
作者简介
胡新辉,男,陕西西安人,从事数据挖掘及小波神经网络研究。