期刊文献+

基于蚁群算法的神经网络规则抽取 被引量:1

Rules Extraction from Trained Neural Networks Based on Ant Colony Algorithm
在线阅读 下载PDF
导出
摘要 从神经网络的功能性观点出发,将蚁群算法用于神经网络的规则抽取,为每个隐单元和输出单元生成各自的规则,然后依照网络的传导方向聚合这些规则,从而为整个网络抽取出理解性好、简洁的符号规则.该方法不依赖于具体的网络结构和训练算法,可以方便地应用于各种分类器型神经网络.实验结果表明了该方法的实用性和可行性. This paper from the functional point of view,proposed a method that the ant colony algorithm is applied to the rule extraction from neural networks,generating respective rules for each hidden units and output units then polymerizing these rules according to the network's conduction direction,thus extracting accurate,concise and comprehensible symbolic rules for the whole network.This method is independent of the architecture and training algorithm so that it could be easily applied to diversified neural classifiers.The result of experiment has shown its practicability and feasibility.
作者 高在村 邓伟
出处 《微电子学与计算机》 CSCD 北大核心 2009年第5期156-159,162,共5页 Microelectronics & Computer
基金 国家自然科学基金项目(60673092) 教育部科研重点项目(205059) 江苏省高校自然科学基金(07KJD520186)
关键词 神经网络 规则抽取 蚁群算法 聚类 neural network rules extraction ant colony algorithm clustering
作者简介 高在村 男,(1968-),硕士研究生,讲师.研究方向为图像处理、神经计算. 邓伟 男,(1967-),博士,副教授.研究方向为人工智能、神经网络、模式识别.
  • 相关文献

参考文献7

二级参考文献15

  • 1张丽平,俞欢军,陈德钊,胡上序.粒子群优化算法的分析与改进[J].信息与控制,2004,33(5):513-517. 被引量:86
  • 2陈国初,俞金寿.微粒群优化算法[J].信息与控制,2005,34(3):318-324. 被引量:59
  • 3刘靖明,韩丽川,侯立文.基于粒子群的K均值聚类算法[J].系统工程理论与实践,2005,25(6):54-58. 被引量:122
  • 4黄振华 吴诚一.模式识别[M].杭州:浙江大学出版社,1991.40-62.
  • 5Dorigo M,Maniezzo V,Colorni A.Ant System:Optimization by a Colony of Cooperating Agents[J].IEEE Trans On System,Man,and Cybernetics,1996 ;26( 1 ) :29~41
  • 6E Lumber,B Faieta. Diversity and adaption in populations of clustering ants[C].In:J-A Meyer,S W Wilson Eds. Proceeding of the Third International Conferrence on Simulation of Adaptive Behavior:From Animals to animates, MIT Press/Bradford Books, Cambridge, MA,1994: 501~508
  • 7N Monmarche.On data clustering with artificial ants[C].In:Data Mining with Evolutionary Algorithms,Research Directions-papers from the AAAI Workshop ed. Menlo Park,CA:AAAI press,1999:23~26
  • 8Rafael S Parpinelli,Heitor S Lopes,Alex A Freitas. Data mining with a ant colony optimization algorithm[J].IEEE Trans On Evolution Computing, 2002 ;6 (4): 321~332
  • 9H S Lopes,M S Coutinho,W C Lima. E Sanchez,T Shibata,L Zadeh Eds. A evolutionary approach to simulate cognitive feedback learning in medical domain :Genetic Algorithm and Fuzzy Logic System :Soft Computing Perspectives[M].Singapore: World Scientific, 1998:193~207
  • 10Colorni A,Dorigo M,Maniezzo V.An investigation of some properties of an ant algorithm[A].Proc.of the Parallel Problem Solving from Nature Conference (PPSN'92).Brussels,Belgium:Elsevier Publishing,1992:509~520

共引文献50

同被引文献17

  • 1杨艳.人工神经网络和支持向量机在剪接位点识别上的应用[J].科技资讯,2007,5(22):215-216. 被引量:1
  • 2范艳峰,徐朝辉.基于聚类遗传算法的神经网络规则抽取及应用[J].计算机工程与应用,2006,42(23):225-228. 被引量:2
  • 3赵林,杨保安,谢志鸣.一种新的基于结构的神经网络规则抽取方法[J].计算机应用与软件,2007,24(6):28-29. 被引量:2
  • 4TICKLE A B,ANDREWS R.The Truth will Come to Light:Directions and Challenges in Extracting the Knowledge Embedded within Trained Artificial Neural Networks[J].IEEE Transactions on Neural Networks,1998,9(6):1057-1068.
  • 5SETIONO R.Extracting Rules from Neural Networks by Pruning and Hidden-Unit Splitting[J].Neural Computation,1997,9(1):205-225.
  • 6SETIONO R.A Penalty Function Approach for Pruning Feedforward Neural Networks[J].Neural Computation,1997,9(1):195-204.
  • 7TOWELL G G,SHAVLIK J W.Extracting Refined Rules from Knowledge-Based Neural Networks[J].Machine Learning,1993,13(1):71-101.
  • 8LANG K J,WITBROCK M J.Learning to Tell Two Spirals Apart[C]∥Proceeding of the 1988 Connectionist Summer School.San Mateo,CA:Morgan Kaufmann,1988:52-59.
  • 9OOYEN A VAN.Improving the Covergence of the Back-Propagation Algorithm[J].Neural Networks,1992(5):465-471.
  • 10DHILLON I S,GUAN Y,KULIS B.Kernel K-Means:Spectral Clustering and Normalized Cuts[C]∥Proceeding of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM,2004:551-556.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部