期刊文献+

平面应变弹塑性问题中面外应力与面内应力的关系 被引量:2

Relation of Out-of-Plane and In-Plane Stresses for Elastic-Plastic Plane Strain Problems
在线阅读 下载PDF
导出
摘要 在解线性强化平面应变弹塑性问题时,往往不考虑弹性效应的影响而假定面外应力σ3=0.5(σ1+σ2)。为了得到考虑弹性效应影响时的面外应力和面内应力的关系,引入了反映弹塑性变形比例的参数vep,导出了面外应力和面内应力之间的关系式。该关系式表明:面外应力可由面内应力惟一地确定,而且它们之间呈近似线性的分布关系。 The effect of elasticity for bi-linear elastic-plastic plane strain problems is always neglected. On this condition,there is an assumpation of the out-of-plane σ3 = 0.5 (σ1 + σ2). The relation between out-of-plane stresses and in-plane stresses is examined when elasticity is taken into account. By introducing a constraint variable of vep, the expression of out-of-plane stresses is derived. This expression indicates that out-of-plane stresses could be expressed directly in terms of in-plane stresses,and the distributions are nearly straight lines. These results provides a simple way to the determination of out-of-plane stresses for common elastic-plastic plane strain problems.
出处 《江南大学学报(自然科学版)》 CAS 2009年第2期198-201,共4页 Joural of Jiangnan University (Natural Science Edition) 
关键词 面外应力 弹塑性变形 平面应变问题 out-of-plane stresses, elastic-plastic deformation, plane strain problems
作者简介 王淑丽(1983-),女,山东高密人,机械设计及理论专业硕士研究生。 通讯作者:田常录(1963-),男,内蒙古包头人,教授,博士生导师。主要从事断裂力学等研究。Email:cltian63@163.com
  • 相关文献

参考文献11

  • 1Capsoni A, Corradi L. A plane strain formulation of the elastic-plastic constitutive law for hardening von raises materials [ J ]. International Journal of Solids and Structures, 1995,32 (23) : 3515-3531.
  • 2Capsoni A, Corradi L. Variational formulations for the plane strain elastic-plastic problem for materials governed by the yon mises criterion [ J ]. International Journal of Plasticity , 1996, 12 (4) : 547-560.
  • 3田常录,那日苏.塑性区内的弹性体变形[J].机械强度,2004,26(z1):177-179. 被引量:1
  • 4那日苏,田常录.弹塑性力学问题比拟解法的推广[J].内蒙古工业大学学报(自然科学版),2004,23(2):98-102. 被引量:1
  • 5曾国平 黄文彬.求解弹塑性问题时考虑材料可压缩性的影响.固体力学学报,1988,(4):366-371.
  • 6Rice J R, Rosengren G R. Plane strain deformation near a crack tip in a power -law hardening material[ J ]. Journal of the Mechanics and Physics of Solids , 1968,16 : 1-12.
  • 7LI Y C, WANG Z Q. High-order asymptotic field of tensile plane-strain nonlinear crack problems[ J]. Scientia Siniea, 1986,29 (4) :941-955.
  • 8YANG S, CHAO Y J. Asymptotic deformation and stress fields at the tip of a sharp notch in an elastic-plastic material[ J]. International Journal of Fracture, 1992,54:211-224.
  • 9TIAN C L, GAO Y X. Role of elasticity in elastic-plastic fracture[ J]. International Journal of Solids and Structures, 2005,42 (3) : 951-970.
  • 10Betro F, Lazzarin P, Matvienko Yu G. J-integral evaluation for U-and V-blunt notches under Mede I loading and materials obeying a power hardening law[ J]. Springer Science and Business Media,2007,146:33-51.

二级参考文献7

  • 1黄克智.弹塑性断裂力学的一个重要进展[J].力学与实践,1993,15(1):1-7. 被引量:15
  • 2[4]TIAN ChangLu,WEN Jian. Non-uniform distribution of energy density near a crack tip in the framework of HRR model. International Journal of Fracture, 2001,110(4): L45 ~ 50.
  • 3[5]Hutchinson J W. Singular behavior at the end of a tensile crack in a hardening material. Journal of the Mechanics and Physics of Solids,1968,16:13 ~ 31.
  • 4[6]Rice J R, Rosengren G R. Plane strain deformation near a crack tip in a power-law hardening material. Journal of the Mechanics and Physics of Solids, 1968,16:1 ~ 12.
  • 5Tian Changlu,Gao Yunxin. Submitted to International Journal of Solids and Structures [J]. The Role of Elasticity in Elastic-plastic Fracture.
  • 6Tian Changlu,Jian Wen. Non-uniform Distribution of Energy Density Near a Crack Tip in the Framework of HRR Model [J]. International Journal of Fracture, 2001,110: 45- 50.
  • 7徐芝纶.弹性力学[M].北京:高等教育出版社,1998.70.

共引文献1

同被引文献11

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部