期刊文献+

MWNTs/PU复合超细纤维的热性能及导电性能 被引量:12

Thermal and electrical properties of MWNTs/PU compound ultrafine fibers
原文传递
导出
摘要 采用静电纺丝技术制备了多壁碳纳米管/聚氨酯(MWNTs/PU)复合超细纤维,并收集成无纺布薄膜,采用热失重分析仪(TGA)和动态力学分析仪(DMA)分析了纤维的热稳定性。利用数字高阻计(PC68)和LorestaGP电阻计测量了纤维薄膜的直流电导率随MWNTs含量的变化关系。为了研究该多孔薄膜的动态电学性能,同时采用Agilent 4294A阻抗分析仪测试了纤维薄膜的电导率在40 Hz^110 MHz频率范围内的变化关系,并与浇注试样的结果进行比较。结果表明,随MWNTs在PU纤维中含量的增加,复合纤维的热稳定性提高。当MWNTs质量分数达40%时,PU的电导率提高近1010倍。 The electrospinning technique was used to produce multi-walled nanotubes(MWNTs) and polyurethane (PU) compound ultrafine fibers. Thermal stability and dynamic mechanical properties of MWNTs/PU non-wovens were examined by the thermogravimetric analysis and dynamic mechanical analysis. The relationship between the direct current electrical conductivity and the mass fraction of the MWNTs was tested. The dynamic electrical conductivity in the range from 40 Hz to 110 MHz was measured by a dielectric spectroscopy using an Agilent 4294A impedance analyzer. The results show that the thermal stability is improved significantly with increasing the content of MWNTs in the compound uhrafine fibers. The electrical conductivity of the membranes is improved 10^10 times compared with that of the pure PU when the mass fraction of MWNTs is 40 %.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2009年第2期79-84,共6页 Acta Materiae Compositae Sinica
基金 国家自然科学基金资助(10502038)
关键词 静电纺丝 MWNTS 聚氨酯 热稳定性 电导率 electrospinning MWNTs polyurethane thermal stability conductivity
作者简介 刘玲,博士,副教授,从事复合材料工艺与性能、纳米/功能复合材料等研究,E-mail:lingliu@tongji.edu.cn
  • 相关文献

参考文献16

  • 1Wong E W, Sheehan P E, I.ieber C M. Nanobeam mechanics: Elasticity, strength and toughness of nanorods and nanotuhes[J].Science, 1997, 277: 1971.
  • 2Pan Z W, Xie S S. Very long carbon nanotubes [J]. Nature, 1998, 394: 631.
  • 3Ge Jason J, multiwalled Assembly of well aligned confined polyacrylonitrile environments: Electrospun composite nanofiber sheets [J]. J Am Chem Soc, 2004, 126:15754 -15761.
  • 4Baughman Ray H, Zakhidov Anvar A, de Heer Walt A. Carbon nanotubes -The route toward applications [J ]. Science, 2002, 297: 787-92.
  • 5Gordeyev S A, Macedo F J, Ferreira J A, et al. Transport properties of polymer vapour grown carbon fiber composites [J]. Phys B Condens Matt, 2000, 279: 33-36.
  • 6Tang W, Santare M H, Advani S G. Melt processing and mechanical property characterization of multi- walled carbon nanotube/high density polyethylene ( MWNT/HDPE ) composite films[J].Carbon, 2003, 41(14): 2779-2785.
  • 7Park J M, Kim D S. Lee J R, et al. Nondestructive damage sensitivity and reinforcing effect of carbon nanotube/epoxy composites using electro micromechanical technique [J]. Mater Sci Eng C, 2003, 23: 971-975.
  • 8Zhang W D, Shen L, Phang I Y, et al. Carbon nanotubes reinforced nylon- 6 composite prepared by simple melt compounding [J]. Macromolecules, 2004, 37(2): 256-259.
  • 9Qian D, Dickey E C, Andrews R, et al. Load transfer and deformation mechanisms in carbon-polystyrene composites [J].ApplPhys Lett, 2000, 76(20): 2868-2870.
  • 10张娟玲,崔屾.碳纳米管/聚合物复合材料[J].化学进展,2006,18(10):1313-1321. 被引量:23

二级参考文献105

共引文献30

同被引文献210

引证文献12

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部