期刊文献+

基于遗传优化的神经网络盲均衡算法 被引量:4

Blind Equalization Algorithms Based on Neural Network Optimized by Genetic Algorithm
在线阅读 下载PDF
导出
摘要 传统前馈神经网络盲均衡中神经网络的初始权重的确定缺乏理论依据,收敛速度慢,容易陷入局部极小值.为有效克服这些缺陷,提出了遗传优化神经网络的盲均衡算法.算法用遗传算法对前馈神经网络的网络权重进行优化,为神经网络提供一个全局较优的局部搜索空间;再利用传统神经网络在这个局部空间进行更精确地搜索,最终实现盲均衡.计算机仿真结果表明:与传统神经网络算法相比,新算法达到了更好的收敛特性和均衡效果,剩余稳态误差减少30%以上,收敛速度加快约20%,误码率也有明显降低. There are some disadvantages such as slow convergence, easy local minimum and no enough theoretical evidence for determining the initial weight of neural network by the traditional FNN blind equalization algorithm. Therefore a genetic algorithm optimizing neural network (GA-BP) is proposed to overcome these disadvantages. First, a preferable local solution space is offered to the neural network by using GA. Then, a precise searching is realized in the space with the conventional neural network algorithm to finish the blind equalization. Finally the comparisons between the traditional FNN algorithm and the GA-BP are carried out, and the simulating results show that the remainder steadystate error has decreased by more than 30%, the convergence rate has improved by 20% and the bit error rate(BER) has dropped obviously.
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2009年第2期137-142,共6页 Journal of North University of China(Natural Science Edition)
关键词 盲均衡 神经网络 BP算法 遗传算法 blind equalization neural network BP algorithm genetic algorithm
作者简介 李沅(1982-),女,助教,硕士.主要从事信号与信息处理方面的研究.
  • 相关文献

参考文献7

二级参考文献33

  • 1刘建娟,徐晓苏.改进遗传人工神经网络在组合导航中的应用[J].中国惯性技术学报,2006,14(5):24-27. 被引量:3
  • 2蔡文.物元模型及其应用[M].北京:科学技术文献出版社,1995..
  • 3D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning [M]. Reading, MA: Addison Wesley, 1989.
  • 4Z. Michalewicz. Genetic algorithms + Data Structures = Evolution Program [Z]. AI Series, Springer Verlag, New York, 1994.
  • 5Liang Wang, John Yen. Extracting fuzzy rules for system modeling using a hybrid of genetic algorithm and Kalman filter [J]. Fuzzy Sets and systems, 1999, 101: 353-362.
  • 6Vittorio Maniezzo. Genetic evolution of the topology and weight distribution of neural networks [J]. IEEE Trans. Neural Network,1994. 5: 39-53.
  • 7Ilona et al. An investigation into the application of neural networks,fuzzy logic, genetic algorithms, and rough sets to automated knowledge acquisition for classification problems [J].Nenrocomputing, 1999, 24: 37-54.
  • 8M. T. Hagan, M. B. Menhaj. Training feedforward networks with the Marquardt algorithm [J]. IEEE Trans. Neural Notworks, 1994, 5:989-993.
  • 9D. Nguyen, B. Widrow. Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights [J].in Int. Joint Conf. Neural Networks, 1990, 3: 21-26.
  • 10王小平 曹立平.遗传算法-理论、应用与软件实现[M].西安:西安交通大学出版社,2000..

共引文献65

同被引文献33

  • 1李军华,黎明,袁丽华.基于个体相似度交叉率自适应的遗传算法[J].系统工程,2006,24(9):108-111. 被引量:11
  • 2赵菊敏,程海青,张立毅.基于动量项前馈神经网络盲均衡算法[J].太原理工大学学报,2007,38(3):212-214. 被引量:5
  • 3ZHANG Jun, HUANG De-shuang, LOK Tat-ruing, et al. A novel adaptive sequential niche technique for multimodal function optimization[J]. Neuro Computing,2006,69(16) :2396-2401.
  • 4KUMAR P, CHANDNA V K, HOMAS M S. Fuzzy-genetic algorithm for pre-processing data at the RTU[J]. I EEE Trans on Power Systems,2004,19(2) :718-723.
  • 5PRASAD K, RAN JAN R, SAHOO N C,et al. Optimal reconfiguration of radial distribution systems using a fuzzy mutated genetic algorithm[J]. IEEE Trans on Power Delivery,2005,20(2) : 1211- 1213.
  • 6DEB K, ANAND A, JOSHI D. A computationally efficient evolution- ary algorithm for real-parameter evolution[ J ]. Evolutionary Computation ,2002,10(4) :371-395.
  • 7SINHA A, TIWARI S,DEB K. A population based steady state procedure for real parameter optimization [ C ]//Proc of the 2005 IEEE Congress on Evolutionary Computation. 2005:514-521.
  • 8DEEP K, THAKUR M. A new crossover operator for real coded genetic algorithms [ J ]. Applied Mathematics and Computation, 2007,188( 1 ) :895-911.
  • 9LING S H,LEUNG F H F. An improved genetic algorithm with average-bound crossover and wavelet mutation operations [ J ]. Soft Computing, 2007,11(1) :7-31.
  • 10DEEP K, THAKUR. A new mutation operator for real coded genetic algorithms [ J ]. Applied Mathematics and Computation, 2007,193 (1) :211-230.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部