期刊文献+

高速旋转弹丸弹道修正原理分析及仿真 被引量:2

Trajectory Correction Principle Analysis and Simulation Research of High-speed Rotating Projectile
在线阅读 下载PDF
导出
摘要 解决由于高速旋转弹丸的旋转特性导致难以采用常规方案对其进行弹道修正的技术难点。提出基于压电陶瓷智能材料的弹道修正原理技术方案,依据弹头可能动作的思路,设计弹头修正机构,通过探知弹头旋转频率,以此调整压电陶瓷杆的加电模式,利用压电陶瓷的逆压电效应,从而调整相应陶瓷杆的伸缩动作,保证在旋转条件下弹头可以向固定方向偏转,解决了修正旋转弹丸的难题。详细阐述了修正弹丸的系统组成和工作原理,同时建立了修正弹丸理想条件下的外弹道数学模型,并通过仿真计算得到一定条件下修正弹丸的弹道曲线和详细修正数据,仿真结果验证了该方案的有效性和可行性。 It is very difficult to make trajectory correction for high - speed rotating projectile because of rotating characteristic, which can not be solved by adopting the traditional correction projects. Aimed at this technology nodus, a new type of trajectory correction technology project is presented based on piezoelectricity pottery intelligent material. According to the idea that the warhead can act, the warhead correction mechanism is designed. The adding electricity mode of piezoelectricity pottery pole is regulated by detecting rotating frequency of warhead. Con- sequently the flexions of the relevant pottery poles are controlled to ensure that the warhead should keep fixed directional deflection in rotating condition. Thus the rotating problem is solved. The system composition and work principle of correction projectile are also discussed amply. Simultaneously, the exterior trajectory mathematic model of correction projectile in ideal condition is founded, and the trajectory curve and detailed data are gained by simulation and calculation. The result shows that the correction project is effective and feasible.
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2009年第2期46-50,共5页 Journal of Air Force Engineering University(Natural Science Edition)
基金 国防预研基金资助项目(51405030605JB3201)
关键词 高速旋转弹丸 弹头 压电陶瓷 弹道修正 high - speed rotating projectile warhead piezoelectricity pottery trajectory correction
作者简介 解增辉(1979-),男,山西运城人,博士生,主要从事航空军械技术、导弹制导控制与仿真研究;E-mail:xzhjx@126.com 刘占辰(1962-),男,河北赞皇人,教授,主要从事航空武器装备、弹药引信等研究.
  • 相关文献

参考文献7

二级参考文献15

  • 1Agarwal R K, Deese J E. Transonic Wing-body Calculations Using Euler Equations[C]. MAA - 83 - 0501, 1983.
  • 2Chen J P, Ghosh A R, Sreenivas K, Whitfield D L. Comparison of Computations Using Navier-Stokes Equations in Rotating and Fixed Coordinates for Flow through Turbomachinery[C]. AIAA - 97 - 0878, 1997.
  • 3Rieger H, Jarnson A. Solution of Steady Thrte-dimensional Compressible Elder and Navier-Stokes Equations by an Implicit LU Scheme[C].MAA - 88 - 619, 1988.
  • 4Jameson A, Yoon S. LU Implicit Schemes with Multiple Grids for Euler Equations[C]. AIAA - 86 - 105, 1986.
  • 5Baldwin B S, Lomax H. Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows[C]. AIAA - 78 - 257,1978.
  • 6Paul Weinacht, Bernard Guidos J, Walter Sturek B, Betty Ann Hldes. PNS Computations for Spinning Shell at Moderate Angles of Attack and for Long L/D Finned Projectiles[C]. ADA169531, 1986.
  • 7Steger J L, Nietubicz C J, Heavey K R. A General Curvilinear Grid Generation Program for Projectile Configurations[R]. ADA107334,October 1981.
  • 8Karolyn Krlal S, Leonard Macalllter C. Aerodynamic Properties of a Family of Shell of Similar Shape - 105mm XM380E5, XM380E6,T388 and 155mm T387[R]. AD866610, February 1970.
  • 9Charles Nietubicz J and Klaus Opalka O. Supersonic Wind Tunnel Measurements of Static and Magnus Aerodynamic Coefficients for Projectile Shapes With Tangent and Secant Oglve Neses[R]. ADA083297, February 1980.
  • 10Sturek W B, et al. Computations of Magnus Effects for a Yawed, Spinning Body of Revolution[C]. AIAA Journal, 1978, 16(7).

共引文献47

同被引文献53

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部