期刊文献+

基于轮廓特征的车辆遮挡检测和分离算法 被引量:3

A Vehicle Contour-based Method for Occlusion Detection and Segmentation
在线阅读 下载PDF
导出
摘要 在交通场景下进行多目标跟踪时,如何正确检测出车辆间的相互遮挡是影响车辆跟踪结果的关键。针对问题,运用投影理论分析交通场景的三维几何投影特征,用长方体投影轮廓模型对车辆进行建模,重构其三维投影轮廓,以进行遮挡的检测和分离。与以往的方法相比,它在估计出的车辆外形轮廓基础上进行遮挡检测,不需要匹配操作,计算量较小,并能解决基于匹配的方法无法对付的初始遮挡问题。用实验验证了该算法的有效性。 In multi - object tracking of traffic scene, how to detect the occlusion is a key problem for vehicle tracking. A novel vehicle contour based method is proposed to deal with this problem. This method firstly extracts the 3 D geometry character from the vehicle images according to the projecting theory, establishes the model of the vehicle with the cuboid project contour, and then reconstructs its 3D project contour, detects and segments the occlusion re- gions. Compared with traditional method, it deals with the problem with less computation because it generates the vehicle contour firstly and no match calculation is needed. Moreover, this method is able to solve the initial occlusion problem, which could not be solved with matching based method. The experimental results show that the proposed method is more efficient.
出处 《计算机仿真》 CSCD 北大核心 2009年第4期297-300,共4页 Computer Simulation
基金 中科院自动化所研究课题基金(A0602)
关键词 遮挡检测 投影轮廓模型 贝叶斯分类 Occlusion detection Projection contour model Bayes classification
作者简介 刘学亮(1981-),男(汉族),河北人,硕士研究生,主要研究方向为视频图像处理,智能交通系统。 严捷丰(1978-),男(汉族),江苏人,博士研究生,主要研究方向为视频图像处理,智能交通系统。 周荷琴(1946-),女(汉族),江苏人,教授,博士生导师,主要研究方向为医学图像处理,智能信息处理。
  • 相关文献

参考文献6

  • 1Franco Oberti, Simona Calcagno, Michela Zara. Robust Tracking of Humans and Vehicles in cluttered Scenes with Occlusions[ C]. IEEE International Conference on Image Processing, New York, 2002.
  • 2葛嘉琦,李勃,陈启美.基于图像运动区域的车辆遮挡跟踪算法[J].南京大学学报(自然科学版),2007,43(1):66-72. 被引量:8
  • 3Shunsuke Kamijo, et, al. Spatio- Temporal MRF model and its Application to Traffic Flow Analyses[ C]. IEEE Proceedings of the 21 st International Conference on Data Engineering, Tokyo, 2005.
  • 4Clement Chun Cheong Pang, William Wai Leung Lam, Nelson Hon Ching Yung. A Method for Vehicle Count in the Presence of Multiple -Vehicle Occlusions in Traffic Images [ J ]. IEEE Transaction on Intelligent Transportation Systems, 2007,8 ( 3 ) : 441 - 459.
  • 5Richard Duda,Peter Hart,David Stork.模式分类[M].北京:机械工业出版社,2003.
  • 6施毅,路小波,黄卫,刘涛.基于时空马尔可夫随机场模型的车辆跟踪算法研究[J].土木工程学报,2007,40(1):74-78. 被引量:2

二级参考文献21

  • 1杨建国,尹旭全,方丽,李健,王兆安.基于自适应轮廓匹配的视频运动车辆检测和跟踪[J].西安交通大学学报,2005,39(4):351-355. 被引量:16
  • 2祝恩,殷建平,张国敏.基于迁移参考节点的指纹匹配方法[J].南京大学学报(自然科学版),2005,41(4):424-428. 被引量:2
  • 3刘国翌,陈睿,邓宇,李华.基于视频的三维人体运动跟踪[J].计算机辅助设计与图形学学报,2006,18(1):82-88. 被引量:9
  • 4Kass M, Witkin A, Terzopoulos D. Snakes: active contour models [J]. International Journal of Computer Vision,1987, 1 (4): 321-331
  • 5Smith S M, Brady J M. ASSET-2: real-time motion segmentation and shape tracking[J]. IEEE Trans. Pat. Anal.Mach. Intel., 1995,17 (8) : 814-820
  • 6Senior A, Hampapur A, Tian Y L, et al. Real-time motion segmentation and shape tracking [ C ]//Second international workshop on performance evaluation of tracking and surveillance Systems. 2001
  • 7Shunsuke kamijo, Tsunetoshi nishida, Suguru satoh, et al.Automated behavior and statistical analyses from traffic images based on vehicle tracking Algorithm [C]//The IEEE 5^th international conference on intelligent transportation systems. 2002:920-925
  • 8Shunsuke kamijo, Yasuyuki matsushita, Katsushi ikeuchi, etal. Traffic monitoring and accident detection at Intersections[J].IEEE Transactions on Intelligent Transportation Systems,2000,1 (2) :108-118
  • 9A Murat Tekalp. Digital video processing [ M ]. Beijing:Tsinghua University Publishing House, 1998:119-120
  • 10Geman S, Geman D. Stochastic relaxation, gibbs distributions and the Bayesian restoration of images[J]. IEEE Trans. Pat.Anal. Mach. Intel., 1984,6 (6) :721-741

共引文献8

同被引文献35

  • 1刘勃,周荷琴.昼夜转换场景中的车辆检测[J].信号处理,2006,22(3):390-394. 被引量:3
  • 2郭磊,李克强,王建强,连小珉.一种基于特征的车辆检测方法[J].汽车工程,2006,28(11):1031-1035. 被引量:22
  • 3ZHANG Wei,Jonathan WU Q M, YANG Xiao-kang, et al. Multilevel Framework to Detect and Handle Vehicle Occlusion[J]. IEEE Transaction on Intelligent Transportation Sys- tems,2008,9(3):161-174.
  • 4Goo J, Aggarwal J K, Gokmen M. Tracking and Segmenta- tion of Highway Vehicles in Cluttered and Crowded Scenes [C]//Proc of IEEE Workshop on Applications of ComputerVision, 2008 : 1-6.
  • 5HUANG Chung-Lin, LIAO Wen Chieh. A Vision-Based Ve- hicle Identification System[J]. IEEE Pattern Recognition, 2004,4(8) :364.
  • 6Clement Chun Cheong Pang,William Wai Leung Lam, Nelson Hon Ching Yung. A Method for Vehicle Count in the Pres ence of Multiple-Vehicle Occlusions in Traffic Images [J].IEEE Transactions on Intelligent Transportation Systems, 2007,8(9) :441- 449.
  • 7Clement Chun Cheong Pang, Tan Zhigang, Nelson Hon Ch ing Yung. A Methodology for Resolving Severely OccludedVehicles Based on Component Based Multi-Resolution Rela tional Graph Matching[C]//Proc of International Conferenceon Machine Vision, 2007:141-146.
  • 8SONG Xue-feng, Ram Nevatia. Detection and Tracking of Moving Vehicles in Crowded Scenes [C] // Proc of IEEEWorkshop on Motion and Video Computing,2007:1- 4.
  • 9SONG Xue feng,Ram Nevatia. A Model Based Vehicle Seg- mentation Method for Tracking[J]. IEEE Computer Vi sion, 2005, 2(12) :1124-1132.
  • 10Kanhere N K, Pundlik S J ,Birchfield S T. Vehicle Segmen- tation and Tracking from a Low-Angle Off Axis Camera [J]. IEEE Computer Vision and Pattern Recognition,2005, 2(7):1152-1158.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部