期刊文献+

色噪声激励下Duffing-Rayleigh-Mathieu系统的稳态响应 被引量:6

Stationary response of Duffing-Rayleigh-Mathieu system under colored noise excitation
在线阅读 下载PDF
导出
摘要 基于广义谐和函数与随机平均原理,研究了具有强非线性的Duffing-Rayleigh-Mathieu系统在色噪声激励下的稳态响应。通过van der Pol坐标变换,将系统运动方程转化为关于幅值与初始相位角的随机微分方程。应用Stratonovich-Khasminskii极限定理,作随机平均,得到近似的二维扩散过程。在此基础上,考虑共振情形,引入相位差变量,做确定性的平均,得到关于幅值与相位差的It随机微分方程。建立对应的Fokker-Planck-Kolmogorov(FPK)方程,结合边界条件与归一化条件,用Crank-Nicolson型有限差分法求解稳态的FPK方程,得到平稳状态下系统的联合概率分布。用Monte Carlo数值模拟法验证了理论方法的有效性。 Based on generalized harmonic functions, a new stochastic averaging procedure for strongly nonlinear oscillators under combined periodical and wide-band colored noise excitations is used to investigate the stationary response of DuffingRayleigh-Mathieu system under colored noise excitation. The damping is linear plus nonlinear. The periodical excitation is parametric and the random excitations are external plus parametric. The motion equation of the original system is transformed to a set of stochastic differential equations by van der Pol transformation. According to Stratonovich-Khasminskii limit theorem and by introducing phase difference, the stochastic averaging and deterministic averaging procedures are completed and the original system is approximated by two diffusion processes in the case of resonance. The reduced FPK equation is established and solved numerically with boundary conditions and normalization condition, All theoretical results are verified by Monte Carlo digital simulation.
出处 《振动工程学报》 EI CSCD 北大核心 2009年第2期207-212,共6页 Journal of Vibration Engineering
基金 国家自然科学基金资助项目(10802030) 教育部博士点基金资助项目(200802511005)
关键词 强非线性系统 色噪声 随机平均 FPK方程 稳态响应 strongly nonlinear system colored noise stochastic averaging FPK equation stationary response
作者简介 吴勇军(1978-),男,讲师。电话:(021)64252705;E—mail:yongjun.wu@yahoo.com.
  • 相关文献

参考文献13

  • 1Gammaitoni L, Hanggi P, Jung P, et al. Stochastic resonance [J]. APS Review of Modern Physics, 1998, 70(1): 223- 287.
  • 2Cai G Q, Lin Y K. Nonlinearly damped systems under simultaneous harmonic and random excitations [J]. Nonlinear Dynamics, 1994, 6: 163-177.
  • 3Huang Z L, Zhu W Q. Exact stationary solutions of averaged equations of stochastically and harmonically excited MDOF quasi-linear systems with internal and (or) external resonances [J]. Journal of Sound and Vibration, 1997, 204: 563-576.
  • 4Huang Z L, Zhu W Q, Suzuki Y. Stochastic averaging of strongly nonlinear oscillators under combined harmonic and white noise excitations[J]. Journal of Sound and Vibration, 2000, 238 (2): 233-256.
  • 5Huang Z L, Zhu W Q. Stochastic averaging of quasiintegrable Hamiltonian systems under combined harmonic and white noise excitations [J]. International Journal of Non-Linear Mechanics, 2004, 39:1 421-1 434.
  • 6Rong H W, Meng G, Wang X D, et al. Response statistic of strongly non-linear oscillator to combined deterministic and random excitation [J]. International Journal of Non-Linear Mechanics, 2004, 39 (6) : 871-878.
  • 7Xu W, He Q, Fang T, et al. Global analysis of crisis in twin-well Duffing system under harmonic excitation in presence of noise [J]. Chaos Solitons & Fractals, 2005, 23 (1): 141-150.
  • 8Xu W, He Q, Fang T, et al. Stochastic bifurcation in Duffng system subject to harmonic excitation and in presence of random noise [J]. International Journal of Non-Linear Mechanics, 2004, 39 (9): 1 473-1 479.
  • 9Namachchvaya N S, Sowers R B. Unified approach for SDOF systems subject to deterministic and random excitation [J]. Stochastics and Dynamics, 2001, 1(3): 1-46.
  • 10Wagner U V. On double crater-like probability density functions of a Duffing oscillator subjected to harmonic and stochastic excitation [J]. Nonlinear Dynamics, 2002,28: 343-355.

同被引文献41

  • 1孙善超,王卫东,刘金朝,李海浪.基于车辆系统稳定性分析的晃车现象研究[J].中国铁道科学,2012,33(2):82-88. 被引量:26
  • 2孙中奎,徐伟,杨晓丽.窄带激励下带有时滞反馈的非线性动力系统的响应[J].振动工程学报,2006,19(1):57-64. 被引量:8
  • 3张娜敏,徐伟,王朝庆.色噪声驱动的非对称双稳系统的平均首次穿越时间[J].物理学报,2007,56(9):5083-5087. 被引量:8
  • 4Bhandari R G,Sherrer R E.Random vibrations in discrete nonlinear dynamic systems [J].Journal of Mechanical Engineering Science,1968,10(2): 168-174.
  • 5Wen Y K.Approximate method for nonlinear random vibration [J].Journal of the Engineering Mechanics Division,1975,101(4): 389-401.
  • 6Spanos P D,Sofi A,Di Paola M.Nonstationary response envelope probability densities of nonlinear oscillators [J].Journal of Applied Mechanics,2007,74(2): 315-324.
  • 7Jin X L,Huang Z L.Nonstationary probability densities of strongly nonlinear single-degree-of-freedom oscillators with time delay [J].Nonlinear Dynamics,2010,59(1/2): 195-206.
  • 8Xu Y,Gu R C,Zhang H Q,Xu W,Duan J Q.Stochastic bifurecations in a bistable Duffing-Van der Pol oscillator with colored noise [J].Physical Review E,2011,83(5): 0562151-1-0562151-7.
  • 9Fleming W H,Soner H M.Controlled Markov Processes and Viscosity Solutions [M].New York: Springer Press,2006: 9-55.
  • 10Yong J M,Zhou X Y.Stochastic Controls: Hamiltonian Systems and HJB Equations [M].New York: Springer Press,1999: 51-92.

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部