期刊文献+

基于LS-SVM的捷联惯组误差系数预测

Predicting the Error Coefficients of SIMU Based on LS-SVM
在线阅读 下载PDF
导出
摘要 针对目前小样本容量的捷联惯组误差系数预测精度不高的问题,采用最小二乘支持向量机(LS-SVM)对捷联惯组误差系数进行了预测研究,并以某型捷联惯组的某项陀螺漂移误差系数的历史数据为例进行了预测。结果表明,最小二乘支持向量机具有优秀的小样本数据学习能力和预测能力。 Considering to the low prediction precision in small sample of the error coefficients of strapdown Inertial Measurement Unit(SIMU),Least Squares Support Vector Machines(LS-SVM) is adopted to predict the error coefficients of the SIMU,and prediction of some gyroscope drift error coefficient of some SIMU is proposed.The simulation indicates that the method presented has excellent learning ability and can provide more accurate data prediction.
作者 许萌
机构地区 中国人民解放军
出处 《科学技术与工程》 2009年第7期1989-1991,2004,共4页 Science Technology and Engineering
关键词 捷联惯性测量组合 支持向量机 最小二乘支持向量机 漂移误差系数 预测 strapdown inertial measure unit support vector machines least squares support vector machines drift error coefficients prediction
  • 相关文献

参考文献5

二级参考文献30

  • 1郭秀中.惯导系统陀螺仪理论[M].北京:国防工业出版社,1996.4-5.
  • 2[2]唐雪梅,张金槐,邵风昌等.武器装备小子样试验分析与评估.国防工业出版社,2001:7~11.
  • 3Vapnik V N. Statistical learning theory[M]. New York, 1998.
  • 4Scholkoph B, Smola A J, Bartlett P L. New support vectoral gorithms[J]. Neural Computation, 2000, 12:1207-1245.
  • 5Suykens J A K, Branbanter J K, Lukas L, et al. Weighted least squares support vector machines: robustness and spare approximation [J]. Neurocomputing, 2002, 48(1): 85-105.
  • 6Lin C-F, Wang S-D. Fuzzy support vector machines[J]. IEEE Trans on Neural Networks, 2002, 13(2): 464-471.
  • 7Tay F E H, Cao L J. Modified support vector machines in financial time series forecasting[J]. Neurocomputing, 2002, 48: 847-861.
  • 8Tay F E H, Cao L J. ε-Descending support vector machines for financial time series forecasting[J]. Neural Processing Letters, 2002, 15(2): 179-195.
  • 9Keoman V, Hadzic I. Support vectors selection by linear programming[A]. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks[J. Como, Italy, 2000, 5: 193-198.
  • 10Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machine[A]. Proc the 1997 IEEE workshop on neural networks for signal processing[C]. Amelea Island, FL, 1997, 276-285.

共引文献149

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部