期刊文献+

一维周期链结构中混合单向模仿少数者博弈模型研究

Research of mixed single directional imitational minority game in one dimensional periodic chain
在线阅读 下载PDF
导出
摘要 根据现实生活中普遍存在的经纪人跟风现象,提出并研究了一维周期链结构中混合单向模仿少数者博弈模型.在该模型中,将经纪人置于一维周期链结构中,一部分经纪人可以模仿其左侧邻居的行为,采取相应的决定;另一部分经纪人维持基本少数者博弈的规则进行决策.研究发现,当记忆容量m较小时,系统表现比原始的少数者博弈模型要好.随着可参与模仿的经纪人人数N0的增加,系统方差呈下降趋势,体现出引入模仿的有效性.当m增大时,随着N0的增加,系统方差呈现一定的上升趋势,体现出引入模仿对经纪人预测能力的抑制作用. A mixed single directional imitational minority game is proposed according to the phenomenon that agents can imitate in real life. Agents are put in one dimensional periodic chain, some agents can imitate their left-hand neighbor to make decisions and others just make choices based on their own strategies. Results show that system performance is better than that without imitation, and system variance decreases with increasing imitational agent number NO for small memory size m, which exhibits the validity of imitation. System variance in creases with increasing NO for large m, which indicates the inhibition to forecast ability for agents.
出处 《纺织高校基础科学学报》 CAS 2009年第1期94-97,共4页 Basic Sciences Journal of Textile Universities
关键词 一维周期链 模仿 混合少数者博弈 one dimensional periodic chain imitation mixed minority game
作者简介 通讯作者:全宏俊(1958-),男,湖南省衡南县人,华南理工大学教授.E-mail:hjquan@seut.edu.cn
  • 相关文献

参考文献12

  • 1CHALLET D, ZHANG Y C. Emergence of cooperation and organization in an evolutionary game[ J]. Physica A, 1997,246: 407-418.
  • 2CHALLET D, ZHANG Y C. On the minority game: Analytical and numerical studies [ J ]. Physica A, 1997,256:514-532.
  • 3ARTHUR W B. Inductive reasoning and bounded rationality (The E1 Farol Problem) [ J]. Am Econ Rev, 1994,84:406-411.
  • 4SAVIT R, MANUCA R, RIOLO R. Adaptive competition, market efficiency, and phase transitions [ J ]. Phys Rev Lett, 1999,82:2 203-2 206.
  • 5FRANTISEK Slanina. Social organization in the minority game model[ J]. Physica A ,2000,286:367-376.
  • 6FRANTISEK Slanina. Harms and benefits from social imitation[ J]. Physica A,2001,299 :334-343.
  • 7QUAN Hong-Jun,WANG Bing-Hong,HUI Pak-Ming,LUO Xiao-Shu.Cooperation in the Mixed Population Minority Game with Imitation[J].Chinese Physics Letters,2001,18(9):1156-1158. 被引量:2
  • 8QUAN Hong-jun, WANG Bing-hong, HUI P M. Effects of imitation in a competing and evolving population [ J ]. Physica A,2002,312:619-626.
  • 9QUAN Hong-jun,WANG Bing-hong, HUI P M. Self-segregation and enhanced cooperation in an evolving population through local information transmission [ J ]. Physica A,2003,321 : 300-308.
  • 10CHAU H F,CHOW F K, HO K H. Minority game with peer pressure[ J ]. Physiea A,2004,332:483-495.

二级参考文献12

  • 1CHALLET D, ZHANG Y C. Emergence of cooperation and organization in an evolutionary game[J]. Physica A, 1997,246:407-418.
  • 2CHALLET D, ZHANG Y C. On the minority game: Analytical and numerical studies[J]. Physica A, 1997,256:514- 532.
  • 3ARTHUR W B. Inductive reasoning and bounded rationality (The El Farol Problem) [J]. Am Econ Rev, 1994,84: 406-411.
  • 4JOHNSON N F, HUI P M, JONSON R, et al. Self-organized Segregation within an Evolving population[J]. Phys Rev Lett,1999,82:3360-3363.
  • 5QUAN Hong-jun, WANG Bing-hong, HUI P M. Effect of imitation in a eompeting and evolving population[J]. Physica A, 2002,312:619-626.
  • 6QUAN Hong-jun, WANG Bing-hong, HUI P M, et al. Self-segregation and enhanced cooperation in an evolving pop ulation through local information transmission[J]. Physica A, 2003,321:300-308.
  • 7WATTS D J, STROGATZ S H. Collective dynamics of small world networks[J], Nature,1998,393:440-442.
  • 8MILGRAM S. The small-world problem[J]. Psychology Today, 1967,2:66-67.
  • 9BARABASI A L, ALBERT R. Emergence of sealing in random networks[J]. Science,1999,286: 509-512.
  • 10BARABASI A L, ALBERT R, JEONG H. Mean-field theory for scale-free random networks[J]. Physica A,1999, 272: 173-187.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部