期刊文献+

2-一致Banach空间中λ-严格伪压缩映像的弱收敛定理

Weak convergence theorems for λ-strict pseudo-contractions in 2-uniformly smooth Banach spaces
在线阅读 下载PDF
导出
摘要 E是2-一致光滑一致凸的Banach空间,C是E中的闭凸子集,T:C→C为λ-严格伪压缩映像.通过讨论修正的Mann迭代x1∈C,xn+1=(1-αn)xn+αnTnxn,n≥1.当{αn}满足适当的条件,{xn}弱收敛于T的某个不动点,这个结果推广了目前的已知结论. Let C be a closed convex subset of a 2-uniformly smooth Banach space E which is uniformly convex and assume that T is a λ- strict pseudo-contraction on C . The modified Mann's iteration generated a sequence { xn } by the formula x1∈C,xa+1+(1-αn)xn+αnT^nxn,n≥1 It is proved if c^n satisfy appropriate conditions , then the {xn} converges weakly to a fixed point T. Some vailable results are improved and generalized.
机构地区 西北大学数学系
出处 《纺织高校基础科学学报》 CAS 2009年第1期41-44,共4页 Basic Sciences Journal of Textile Universities
基金 陕西省教育厅自然科学专项基金(06JK170)
关键词 弱收敛 λ-严格伪压缩 修正的Mann迭代 2-一致光滑Banach空间 weak convergence λ-strict pseudo-contraction modified Mann's iteration 2-uniformly smooth Ba-nach spaces,
作者简介 通讯作者:薛西峰(1961-),男,陕西省华县人,西北大学教授.E-mail:xuefr390@163.com
  • 相关文献

参考文献5

  • 1GIUSEPPE M, XU Hongkun. Weak and strong convergence theorems for strict pseudo-contractions [ J ]. J Math Anal Appl, 2007,329:336-346.
  • 2王小哲,周海云.2-一致光滑空间中严格伪压缩映像的弱收敛定理[J].数学的实践与认识,2008,38(2):139-143. 被引量:13
  • 3ZHOU Haiyun. Convergence theorems of fixed points for A-strict pseudo-contraction in 2-uniformly smooth Banach spaces [ J ]. Nonlinear Analysis,2008,69:3 160-3 173.
  • 4ZHOU Haiyun. Convergence theorems of fixed points for g-strict pseudo-contraction in Hilbert spaces[ J]. Nonlinear Analysis, 2008,69 : 456 -462.
  • 5OFOEDU E U. Strong convergence theorem for K-strict pseudo-contraction in Hilbert spaces [ J ]. J Math Anal Appl, 2006, 321:722-728.

二级参考文献5

  • 1Xu Hong-kun. Inequalities in Banach spaces with applications[J]. Nonlinear Anal, 1991,16 : 1127-1138.
  • 2Giuseppe Marino, Xu Hong-kun. Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces[J]. J Math Anal Appl, 2007, 329(1): 336-346.
  • 3Tan K K, Xu Hong-kun. Fixed point iteration process for asymptotically nonexpansive mappings[J]. Proc Amer Math Soc,1994,122:733-739.
  • 4Deimling K. Zeros of accretive operators [J]. Manuscript Math, 1974,13 : 365-374.
  • 5Martin R H. Defferential equations on closed subsets of a Banach space[J]. Trans Amer Math Soc, 1973,179: 399-414.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部