摘要
This paper analyzes the dynamic characteristics of the variations of the beach volumes for three level zonesof the Yanjing Beach in the Shuidong Bay of the western Guangdong Province by using the methods of dynamic systemanalysis and the multi-dimensional spectral estimation. The results show that the variations of the beach volume arecharaCterized by the multiband oscillations with a dominant semimonth period. Upwards the low tide level, the beachtends to be stable. The estimates of the partial coherences and the partial phases indicate that the variations of thebeach volumes are mainly the results of the direct actions of the waves which are influenced by the tidal level changesand driven by the wind stress. The simulation results of the beach volume series for different beach heart zones bythreshold mixed regressive models indicate that the influence of the tide on the variations of the beach volumes is weakened and the direct actions of the wave energy and the wind stress are apparently enhanced with the increase of thebeach height.(This project was supported by the National Natural Science Foundation of China.)
This paper analyzes the dynamic characteristics of the variations of the beach volumes for three level zonesof the Yanjing Beach in the Shuidong Bay of the western Guangdong Province by using the methods of dynamic systemanalysis and the multi-dimensional spectral estimation. The results show that the variations of the beach volume arecharaCterized by the multiband oscillations with a dominant semimonth period. Upwards the low tide level, the beachtends to be stable. The estimates of the partial coherences and the partial phases indicate that the variations of thebeach volumes are mainly the results of the direct actions of the waves which are influenced by the tidal level changesand driven by the wind stress. The simulation results of the beach volume series for different beach heart zones bythreshold mixed regressive models indicate that the influence of the tide on the variations of the beach volumes is weakened and the direct actions of the wave energy and the wind stress are apparently enhanced with the increase of thebeach height.(This project was supported by the National Natural Science Foundation of China.)