摘要
线性0-1规划作为一种特殊形式的整数规划,在科学和工程问题中有许多应用.基于拉格朗日松弛方法,提出求解线性0-1规划的一种连续化方法.该方法不仅给出了原问题显式形式的对偶函数,而且对偶变量的数目仅等于原问题部分约束的个数,原来的线性0-1规划问题被转化为只有简单约束的普通优化问题,极大地方便了工程应用.以背包问题为例进行的数值实验表明,该方法是求解线性0-1规划的行之有效的实用方法.
Linear 0-1 programming, as a special form of integer programming, has numerous applications to theory as well as to engineering. A Lagrangian relaxation-based continuous solution is presented for solving linear 0-1 programming; It transforms the primal problem into an ordinary optimization problem with an explicit dual function and primal constraints; It is convenient for engineering app simple lication constraints, with smaller size than ; Numerical experiments have been made on certain knapsack problems and computational results show that the proposed algorithm is very promising.
出处
《大连理工大学学报》
EI
CAS
CSCD
北大核心
2009年第2期299-302,共4页
Journal of Dalian University of Technology
基金
国家自然科学基金资助项目(10572031)
关键词
0-1规划
拉格朗日松弛
对偶规划
连续化
凝聚函数
0-1 programming
Lagrangian relaxation
dual programming
continuation
aggregate function
作者简介
李艳艳(1979-),女,博士生,E-mail:emilylee424@yahoo.com.cn;
李兴斯(1942-),男,教授,博士生导师