期刊文献+

基于CO-φ-T图研究混合速率对柴油低温燃烧的影响 被引量:2

Study of the Effects of Mixing on Low-Temperature Diesel Combustion Based on CO-φ-T Map
在线阅读 下载PDF
导出
摘要 利用CO-Ф-T图开展了混合速率对柴油机低温燃烧影响的模拟研究。首先,通过正庚烷详细化学反应动力学单区模型计算,建立了CO-Ф-T图,发现柴油机低温燃烧进程在当量比小于1和温度在1400~2100K内结束时,能够获得高效清洁燃烧。然后,利用带有质量交换且考虑传热损失的化学反应动力学两区模型,结合CO-Ф-T图,研究不同EGR率下不同混合速率对柴油低温燃烧的影响,发现在低温燃烧的后期,即混合控制燃烧阶段,混合速率应当随EGR率增加而增加。但是,当混合速率过高时,燃烧路径容易进入NOx生成区;而混合速率过低时,燃烧进程容易“淬熄”在高CO生成区。因此低温燃烧要同时获得较高的效率和较低的NOx排放,混合速率应当随EGR率增加而适当增加。 The effects of mixing on low temperature diesel combustion were studied based on a new quantitative " Ф( equivalence ratio)-T(temperature) " map for CO formation. Firstly, the CO-Ф-T map was created by performing the zero dimensional calculations using a detailed chemistry of n-heptane. Based on the CO-Ф-T map, it is found that the low emission and high efficiency are obtained simultaneously as the low temperature diesel combustion is completed within the region where COmbustion temperature is approximately from 1 400 K to 2 100 K, and at the lean side of stoichiometric equivalence ratio. Secondly, a twozone chemical kinetic model considering both heat loss and mass transfer between the zones was developed to explore the low temperature combustion process at different EGR levels as well as mixing rates on the CO-Ф-T map. The results show that, on mixing-controlled burning phase, when the mixing rate is too high or too low, the combustion paths tend to enter the zones of higher NOx formation or higher CO formation, respectively. Therefore, as EGR rate increases, mixing rate must properly increase to achieve high efficiency and low NOx emissions simultaneously.
出处 《内燃机学报》 EI CAS CSCD 北大核心 2009年第2期97-102,共6页 Transactions of Csice
基金 国家重点基础研究发展规划项目(2007CB210001) 国家自然科学基金重点项目(50636040) 内燃机燃烧学国家重点实验室开放研究项目(SKLE200801)
关键词 柴油机 低温燃烧 混合速率 CO-Ф-T图 Diesel engine Low temperature combustion Mixing rate CO-Ф-T map
作者简介 黄豪中,博士后,E—mail:hhz421@tom.com。
  • 相关文献

参考文献10

  • 1Onishi S, Jo S H, Shoda K, et al. Active Thermo-Atmosphere Combustion (ATAC)-A New Combustion Process for Internal Combustion Engines [ C ]. SAE Paper 790501,1979.
  • 2Kimura S, Aoki O, Ogawa H, et al. New Combustion Concept for Ultra-Clean and High-Efficiency Small DI Diesel Engines[C]. SAE Paper 1999431-3681, 1999.
  • 3Hardy W L, Reitz R D. A Study of the Effects of High EGR, High Equivalence Ratio, and Mixing Time on Emissions Levels in a Heavy-Duty Diesel Engine for PCCI Combustion[ C]. SAE Paper 2006-01-0026, 2006.
  • 4Su W H, Lin T J, Pei Y Q. A Compound Technology for HCCI Combustion in a DI Diesel Engine Based on the Multi- Pulse Injection and the BUMP Combustion Chamber [ C ]. SAE Paper 2003-01-0741, 2003.
  • 5苏万华,林铁坚,张晓宇,裴毅强,赵华.MULINBUMP-HCCI复合燃烧放热特征及其对排放和热效率的影响[J].内燃机学报,2004,22(3):193-202. 被引量:19
  • 6Akihama K, Takatori Y, Inagaki K, et al. Mechanism of the Smokeless Rich Diesel Combustion by Reducing Temperature[C]. SAE Paper 2001-01-0655, 2001.
  • 7Kitamura T, Ito T, Senda J, et al. Mechanism of Smokeless Diesel Combustion with Oxygenated Fuels Based on the Dependency of the Equivalence Ratio and Temperature on Soot Particle Formation [ J]. International Journal of Engine Research, 2002, 3 (4) :223-247.
  • 8Curran H J, Gaffuri P, Pitz W J, et al. A Comprehensive Modeling Study of N-Heptane Oxidation [ J ]. Combustion and Flame, 1998, 114(1) :149-177.
  • 9Su Wanhua, Huang Haozhong. Development and Calibration of a Reduced Chemical Kinetic Model of N-Heptane for HCCI Engine Combustion [ J]. Fuel, i005, 84 (9): 1029- 1040.
  • 10Chang J, Guralp O, Filipi Z, et al. New Heat Transfer Correlation for an HCCI Engine Derived from Measurements of Instantaneous Surface Heat Flux [ C ]. SAE Paper 2004- 01-2996, 2004.

二级参考文献12

  • 1Kelly-Zion Peter L,Dec John E.A Computational Study of the Effect of Fuel-Type on Ignition Time in HCCI Engines[C].Proceedings of the 28th International Symposium(Part 1),2000.1187-1194.
  • 2Yanagihara H.Ignition Timing Control at Toyota ''UNIBUS'' Combustion System[C].Proceedings of the IFP International Congress on a New Generation of Engine Combustion Processes for the Future,2001.34-42.
  • 3Shuji Kimura,Osamu Aoki,Hiroshi Ogawa,Shigeo Muranaka,Yoshiteru Enomoto.New Combustion Concept for Ultra-clean and High-Efficiency Small DI Diesel Engines[C].SAE Paper 1999-01-3681,1999.
  • 4Su Wanhua,Lin Tiejian,Pei Yiqiang.A Compound Technology for HCCI Combustion in a DI Diesel Engine Based on the Multi-Pulse Injection and the BUMP Combustion Chamber[C].SAE Paper 2003-01-0741,2003.
  • 5Kong S C,Han Z,Reitz R D.The Development and Application of Diesel Ignition and Combustion Model for Muti-Dimensional Engine Simulation[C].SAE Paper 950278,1995.
  • 6Huh K Y,Gosman A D.A Phenomenological Model of Diesel Spray Atomization[C].In:Proceedings of The International Conference on Multiphase Flows,1991.
  • 7Reitz R D,Diwakar R.Effect of Drop Breakup on Fuel Sprays[C].SAE Technical Paper Series 860469,1986.
  • 8Reitz R D,Diwakar R.Structure of High-Pressure Fuel Sprays[C].SAE Technical Paper Series 870598,1987.
  • 9Bai C,Gosman A D.Development of Methodology for Spray Impingement Simulation[C].SAE Paper 950283,1995.
  • 10Han Z,Reitz R D.Turbulence Modeling of Internal Combustion Engines Using RNG k-ε Models[J].Combust Sci and Tech,1995,106(4-6):267.

共引文献18

同被引文献12

  • 1John E Dec. A conceptual model of DI diesel combustion based on laser-sheet imaging [C]. SAE Paper 970873, 1997.
  • 2Yu Wenbin, Liu Bin, Li Yang, et al. A hybrid combus- tion control strategy for heavy duty diesel engines based on the technologies of multi-pulse injections, variable boost pressure and retarded intake valve closing tim- ing ECJ. SAE Paper 2011-01 - 1382, 2011.
  • 3Su Wanhua, Lin Tiejian, Pei Yiqiang. A compound technology for HCCI combustion in a DI diesel engine based on the multi-pulse injection and the BUMP com- bustion chamber[C]. SAE Paper 2003-01-0741, 2003.
  • 4Hardy W L, Reitz R D. An experimental investigation of partially premixed combustion strategies using multiple injections in a heavy-duty diesel engine [C]. SAE Paper 2006-01-0917, 2006.
  • 5Yu Yang, Su Wanhua, Huang Haozhong. Study of fuel distribution on diesel PCCI combustion by development of a new characteristic-time combustion model [C]. SAE Paper 2008-01-1605, 2008.
  • 6Gautam T Kalghatgi, Risberg Per, Angstr6m Hans- Erik. Partially pre-mixed auto-ignition of gasoline to at- tain low smoke and low NOx at high load in a compres- sion ignition engine and comparison with a diesel fuel[C]. SAE Paper 2007-01-0006, 2007.
  • 7Sage L Kokjohn, Reed M Hanson, Derek A Splitter, et al. Reitz, experiments and modeling of dual-fuel HCCI and PCCI combustion using in-cylinder fuel blend- ing [C]. SAE Paper 2009-01-2647, 2009.
  • 8Vittorio Manente, Bengt Johansson, Per Tunestal. Ef- fects of different type of gasoline fuels on heavy duty partially premixed combustion [C]. SAE Paper 2009-01- 2668, 2009.
  • 9John E Dec, Magnus Sj6berg, Wontae Hwang. Isolat- ing the effects of EGR on HCCI heat-release rates and NOx emissions [C]. SAE Paper 2009-01-2665, 2009.
  • 10i Heywood J B. Internal combustion engine fundamen- tals[M]. NewYork: Mcgraw-Hill, 1988: 47-48.

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部