期刊文献+

基于最优分解尺度的静态提升小波去噪方法 被引量:5

Stationary Lifting Wavelet De-noising Method Based on Optimal Decomposition Level
在线阅读 下载PDF
导出
摘要 阈值函数选择和分解尺度确定是基于阈值的小波域非线性滤波的两个关键步骤。针对加性白噪声的情况,通过研究小波阈值去噪原理,得出了重构信号信噪比随分解尺度的单增变化规律,构造了用于指示最优分解尺度的目标函数;在分析白噪声小波系数高斯分布特性的基础上,提出了一种基于概率理论的阈值函数,通过极小化广义阈值估计偏差函数,得到了该阈值函数中参数的最优分布区间。仿真结果表明,构造的目标函数能够准确指示信号分解的最优尺度,广泛适用于硬阈值类函数;新阈值函数与另外两种改进型阈值函数相比,在信噪比意义下表现出一定的优越性。 The selection of threshold function and determination of decomposition level are two key steps in threshold-based nonlinear filtering by wavelet transform. In the presence of additive white noise, the variation rule of reconstructed signal SNR is concluded via research into the theory of wavelet threshold de-noising, and a target function is accordingly built to indicate the optimal decomposition level. Based on analysis of white noise wavelet coefficients distribution characteristic, a novel threshold function is built consequently. The optimal distribution area of a parameter in the threshold function is found by minimizing a generalized estimation error function. Simulation results indicate that optimal decomposition levels in threshold based denoising method could be determined precisely by the target function, which could be also applied to threshold functions similar to hard threshold function. Compared to other improved threshold functions, the novel threshold function outperforms the other two functions in the matter of SNR.
作者 张弦 王宏力
出处 《高电压技术》 EI CAS CSCD 北大核心 2009年第3期501-508,共8页 High Voltage Engineering
关键词 静态提升小波变换 sym4小波 阈值去噪 阈值函数 分解尺度 概率理论 stationary lifting wavelet sym4 wavelet threshold de-noising threshold function decomposition level probability theory
作者简介 张弦1982-,男,博士生研究方向为支持向量机、小波理论及在信号处理中的应用电话:(029)84741538 Email:allaqe@163.com 王宏力1965-,男,博士,教授,博导研究方向为容错控制与智能诊断
  • 相关文献

参考文献13

二级参考文献72

共引文献436

同被引文献48

  • 1刘桂雄,李夏妮,周德光.基于多维插值补偿其他因素对传感特性影响的数学方法[J].光学精密工程,2004,12(z1):258-261. 被引量:3
  • 2丁明理,梁宏,王祁,王常虹.基于小生境遗传算法的多维传感器动态解耦方法[J].传感技术学报,2006,19(3):667-671. 被引量:9
  • 3冯大伟,王尚军,雷艳秋.办公楼装修室内空气质量监测分析[J].环境科学与管理,2006,31(5):166-167. 被引量:2
  • 4畅艺峰,李存永.不同注入脉冲信号的功率谱计算[J].电子与信息学报,2007,29(5):1250-1253. 被引量:4
  • 5SELVATHI D, DHARANI J. Realization of beamlettransform edge detection algorithm using FPGA[C]//20131ntermational Conference on Signal Processing, ImageProcessing and Pattern Recognition(ICSIPR). [S.l.]. IEEE,2013: 131-135.
  • 6SYED J, HUSSAIN P, AYESHA S. Analysis of edgedetection algorithm for feature extraction in satelliteimages[C]//Proceeding of the 2013 IEEE IntermationalConference on Space Science and Communication(IconSpace). [S.l.]. IEEE, 2013: 238-242.
  • 7TSNEG Y H, TSAI D M. Defect detection of unevenbrightness in low-contrast images using basis imagerepresentation[J]. Pattern Recognition, 2010,43(3):1129-1141.
  • 8GONZALEZR C,WOODSR E. Digital image processing[M]. Beijing: Publishing House of Electronics Industry,2011.
  • 9PETROU M, KITTLER J. Optimal edge detectors for rampedges [J]. IEEE Transactions on Pattern Analysis andMachine Intelligence, 1991, 13(5): 483-491.
  • 10国家环境保护总局.室内环境空气质量监测技术规范[S].2004.

引证文献5

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部