期刊文献+

ZnO-Al_2O_3混合粉体水基悬浮液性能的研究 被引量:4

Study on Dispersion Behavior of ZnO-Al_2O_3 Powders Aqueous Suspension
在线阅读 下载PDF
导出
摘要 通过Zeta电位、粘度、沉降等测试,研究了添加剂含量、pH值、固含量和球磨时间对ZnO-Al2O3混合粉体水基悬浮液的稳定性、流动性等的影响.实验结果表明:当pH值为9左右,聚丙烯酸添加质量分数为0.20%时,悬浮液粘度最低、稳定性最好.可制得固相体积分数55%的悬浮液.聚乙二醇添加量的增加,使悬浮液粘度增大、稳定性下降.该实验条件下,球磨时间以40h为佳. The stability and fluidity of ZnO-Al2O3 mixed powders suspension in aqueous solution adding with polyacrylie acid and polyethylene glycol were investigated. The Zeta potential of ZnO and Al2O3 were measured respectively in absence and presence of polyacrylic acid and polyethylene glycol. The influences of milling time, pH value, mass fraction of the additive and solid volume fraction on the stability and fluidity of ZnO-Al2O3 powders aqueous suspension were investigated by experiments of viscosity and sedimentation etc. It is noted that ZnO and Al2O3 powders have absolute value of zeta potential bigger than 45mV in pH value from 8 to 10.3 with adding polyacrylic acid. It is found that the suspension has the lowest viscosity and the best stability when the pH value is around 9 and the additive amount of polyacrylic acid is about 0.2wt%, in which the 55vol% solids content of slurry is obtained with the apparent viscosity less than 400mPa · s. The saturation absorption amount of polyacrylic acid for ZnO-Al2O3 mixed powders could be 0.2wt% in which the apparent viscosity is lower and the suspension stability is good in the pH range from 9 to 10.3. With the additive amount of polyethylene glycol increasing, the viscosity of suspension increase and the stability of suspension decease. The optimized milling time is 40h.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2009年第2期413-416,共4页 Journal of Inorganic Materials
关键词 ZnO-Al2O3混合粉体 聚丙烯酸 聚乙二醇 分散性能 ZnO-Al2O3 powders polyacrylic acid polyethylene glycol dispersion behavior
作者简介 孙宜华(1970-),男,高级工程师,博士研究生.E-mail:sunyihua316181@163.com 通讯联系人:李晨辉.E-mail:li-chenhui@sohu.com
  • 相关文献

参考文献16

  • 1Cai K F, He X R, Zhang L C. Mater. Lett. , 2008, 62 (8-9): 1223-1225.
  • 2Lee W S, Chen W T, Lee Y C, et al. Ceram. Intern. , 2007, 33 (6) : 1001-1005.
  • 3Bemik S, Daneu N. J. Euro. Ceram. Soc. , 2007, 27(10) : 3161-3170.
  • 4Tang F Q, Sakka Y, Uchikoshi T. Mater. Res. Bull. , 2003, 38 (2) : 207-212.
  • 5Tang F Q, Uchikoshi T, Sakka Y. J. Am. Ceram. Soc. , 2002, 85 (9) : 2161-2165.
  • 6Liu Fu S C, Xiao H N, Li Y P. Chinese Sci. Bull. , 2005,50 ( 15 ) : 1570-1575.
  • 7Nasu A, Otsubo Y. J. Colloid Interface Sci. , 2007, 310(2) : 617- 623.
  • 8Li J G, Gao L, Guo J K. J. Mater. Sci. Lett. , 2002, 21(6) : 509- 511.
  • 9Liufu S C, Xiao H, Li Y. Powder Technol. , 2004, 145(1) : 20-24.
  • 10Santhiya D, Subramanian S, Natarajan K A. J. Colloid Interface Sci. , 1999, 216(1) : 143-153.

二级参考文献19

  • 1Chibowski S., Paszkiewicz M., Krupa M.. Powder Technol.[J]. 2000, 107(3): 251-255.
  • 2Sun J., Gao L., Guo J. K.. J. Eur. Ceram. Soc.[J]. 1999, 19(9): 1725-1730.
  • 3Eremenko B. V., Bezuglaya T. N., Savitskaya A. N. et al.. Colloid J.[J]. 2001, 63(2): 173-178.
  • 4Toshihide F.. Prog. Org. Coat.[J]. 1996, 29(1-4): 97-105.
  • 5Sprycha R.. Colloids Surface[J]. 1982, 5(2): 147-157.
  • 6Zhang Y. W., Tang M., Jin X. et al.. Solid State Sci.[J]. 2003, 5(3): 435-440.
  • 7Hu Y., Jiang X. Q., Ding Y. et al.. Biomaterials[J]. 2002, 23(15): 3193-3201.
  • 8Manorama S. V., Madhusudan R. K., Gopal R. C. V. et al.. J. Phys. Chem. Solids[J]. 2002, 63(1): 135-143.
  • 9Chibowski S., Paszkiewicz M.. Adsorpt. Sci. Technol.[J]. 2001, 19(5): 397-407.
  • 10Chibowski S., Wisniewska M.. Adsorpt. Sci. Technol.[J]. 2001, 19(5): 408-420.

共引文献15

同被引文献61

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部