期刊文献+

一类竞争扩散方程组的非平凡平衡态解 被引量:2

Existence and Uniqueness of the Unitrivial SteadyStates Solution of CompetitionDiffusion System
在线阅读 下载PDF
导出
摘要 采用比较方法首先证明了在一定条件下,竞争扩散系统存在唯一的非平凡平衡态解;其次。 In the paper,the author mainly use the comparison method first proves the existence,uniqueness of the untrivial steadystates solution of competitiondiffusion system under the conditions,and second,gets the accurate result of the steadystates solution with the dirichlet boundary conditions.
作者 闫欣荣
出处 《纺织高校基础科学学报》 CAS 1998年第2期167-170,173,共5页 Basic Sciences Journal of Textile Universities
关键词 扩散方程组 比较函数 平衡解 竞争扩散系统 comparison function,steadystates solution,competitiondiffusion system
  • 相关文献

参考文献2

二级参考文献1

共引文献3

同被引文献11

  • 1冯兆永,崔尚斌.一个肿瘤生长自由边界问题的研究[J].数学年刊(A辑),2005,26(3):403-412. 被引量:2
  • 2叶其孝.索伯列夫空间[M].北京:人民教育出版社,1981..
  • 3TURING A M. The chemical basis of morphogenesis[J]. Phil Trans Roy Soc Lond, 1952 ,B 237:37-72.
  • 4MURRAY J D. Mathematical Biology[M]. 2^nd edition. Berlin,Springer-Verlag,1993.
  • 5CRAMPIN E J, GAFFNEY E A,MAINI P K. Reaction and diffusion on growing domains; Scenarios for robust pattern formation[J]. Bull Math Biol, 1999,61:1 093-1 120.
  • 6NEVILLE A A, MATTEWS P C, BYME H M. Interactions between pattern formation and domain Growth[J]. Bull Math Biol,2006,68:1 975-2 003.
  • 7SCHNAKENBERG J. Simple chemical reaction systems with limit cycle behaviors[J]. J Theor Biol, 1979,81:389-400.
  • 8WARD J P, KING J R, Mathematical modeling of drug transport in tumor multicell spheroids and monolayer cultures [J]. Math Biol.2003,181: 177-207.
  • 9FRIEDMAN A, LOLAS G. Analysis of a mathematical model of tumor lymphangiogenesis[J]. Math Mod Math Appl Sci,2005,1: 95-107.
  • 10LADYZENSKAJA O A, SOLONNIKOV V A, URAL'CEVA N N. Linear and Quasi-Linear equations of parabolic type[J]. Amer Math Soc, 1968,23: 356-395.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部