期刊文献+

具有双工期的最小化最大延迟的双目标排序(英文)

Bicriteria Scheduling with Double Due Dates to Minimize the Maximum Lateness
在线阅读 下载PDF
导出
摘要 本文研究一个双目标排序问题。由于决策者的利益不同,他们对工件的加工有不同的工期要求,因而可导出两个最大误工问题。我们证明了可在多项式时间内找到关于这两个目标函数的所有Pareto最优点。 This paper studies a bicriteria scheduling problem in which two objective functions are maximum latenesses induced by two sets of due dates, representing different interests of two decision-makers. We present a polynomial-time algorithm for finding all Pareto optimal solutions.
出处 《工程数学学报》 CSCD 北大核心 2009年第1期147-150,共4页 Chinese Journal of Engineering Mathematics
基金 NSFC(10671183) SRFDP(20070459002)
关键词 多目标排序 最大延迟 PARETO最优解 multicriteria scheduling maximum lateness pareto optimal solutions
作者简介 Biography: He Cheng (Born in 1975), Female, Doctor, Lecturer. Research field: scheduling theory and its application.
  • 相关文献

参考文献6

  • 1Hoogeveen H. Multicriteria scheduling[J]. European Journal of Operational Research, 2005, 167:592-623.
  • 2Agnetis A, Mirchani P B, Acciarelli D P, Pacifici A. Scheduling problems with two competing agents[J]. Operations Research, 2004, 52:229-242.
  • 3Baker K R, Smith J C. A multiple-criterion model for machine scheduling[J]. Journal of Scheduling, 2003, 6:7-16.
  • 4Hoogeveen J A, Van de Velde S L. Minimizing total completion time and maximum cost simultaneously is solvable in polynomial time[J]. Operational Research Letters, 1995, 17:205-208.
  • 5Graham R L, Lawler E L, Lenstra J K, Rinnooy Kan A H G. Optimization and approximation in deter- ministic sequencing and scheduling: a survey[J]. Annals of Discrete Mathematics, 1979, 5:287-326.
  • 6Brucker P. Scheduling Algorithms (third edition)[M]. Berlin: Springer, 2001.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部