摘要
利用有限部积分的概念,导出了三维无限接合体中多个界面裂纹,在任意载荷作用下的超奇异微积分方程组.数值分析中,未知的位移间断采用基本分布函数和多项式乘积的形式来近似,其中基本分布函数是根据界面裂纹应力的振荡奇异性来选取的.作为典型算例,研究了存在两个矩形界面裂纹时,裂纹之间距离、裂纹形状及双材料弹性常数对应力强度因子的影响.计算表明,应力强度因子随裂纹间的距离的增大而减小.
Using the finite-part integral concepts, a set of hypersingular integral-differential equations for multiple interfacial cracks in a three-dimensional infinite bimaterial subjected to arbitrary loads was derived. In the numerical analysis, unknown displacement discontinuities were approximated by the products of the fundamental density functions and power series, where the fundamental functions were chosen to express a two-dimensional interface crack exactly. As illustrative examples, the stress intensity factors for two rectangular interface cracks were calculated for various spacing, crack shape and elastic constants. It is shown that the stress intensity factors decrease with the increasing of crack spacing.
出处
《应用数学和力学》
CSCD
北大核心
2009年第3期282-290,共9页
Applied Mathematics and Mechanics
基金
国家自然科学基金资助项目(10872213)
关键词
应力强度因子
奇异积分方程
界面裂纹
有限部积分
边界元法
stress intensity factor
singular integral equation
interface crack
finite-part integral
boundary element method
作者简介
徐春晖(1971-),女,辽宁人,副教授,博士(联系人.Tel:+86—10—62736992;E-mail:xuchunhui_cau@163.com).