期刊文献+

基于DCC-MVGARCH模型的证券组合VaR测度与拓展模型 被引量:5

Measuring Portfolios' VaR and Its Extended Models Based on the DCC-MVGARCH Models
在线阅读 下载PDF
导出
摘要 运用多元的DCC-MVGARCH模型方法对股票投资组合进行VaR测度,并与J.P.Morgan银行采用的IGARCH模型计算结果进行对比。结果表明,在测度VaR方面,无论在1%或是5%置信水平下,DCC-MVGARCH模型均优于单变量IGARCH模型。以DCC-MVGARCH模型测度的VaR为基础,把峰度、流动性风险因素纳入VaR模型框架后,发现拓展后的VaR模型预测风险能力显著增强,在所有拓展模型中,同时考虑了内生性、外生性流动性风险的LAVaR3模型表现最优。 Measuring VaR correctly is the focus of risk management. This paper measures the VaRs of stock portfolio with DCC- MVGARCH model and IGARCH model adopted by J.P. Morgan bank respectively, and compared the performances of the different VaRs. Results indicate that DCC model is superior to IGARCH model in measuring portfolio's VaR whether in 5% or 1% credit levels. Based on DCC- MVGARCH model , after incorporating kurtosis factors and liquidity factors in traditional VaR frames, we find that the extended models significantly have stronger abilities of forecasting risk than ever. In all extended models, the LAVaR3 model that incorporating endogenous and exogenous risks simultaneously perform best.
作者 冯金余
出处 《统计与信息论坛》 CSSCI 2009年第2期64-71,共8页 Journal of Statistics and Information
关键词 VaR测度 DCC-MVGARCH 流动性风险 峰度调整 measuring VaR DCA2- MVGARCH MODELS liquidity risk Kurtosis adjusting
作者简介 冯金余(1974-),男,江西莲花人,经济师,博士生,研究方向:证券市场与金融工程。
  • 相关文献

参考文献20

  • 1Andrey Rogachev. Dynamic Value- at - Risk[ R]. Working Paper, 2002:1 - 20.
  • 2Engle R F. Autoregressive conditional heteroskedasficity with estimates of the variance of the UK ination[J ]. Econometriea, 1982,50: 987 - 1008.
  • 3Bollerslev T. Generalized autoregressive conditional heteroskedasticity[J ]. Journal of Econometrics, 1986,31: 307 - 327.
  • 4Timotheos Angelidis- Alexandros Bencs, Stavros Degiannakis. The Use of GARCH Models in VaR Estimation[J ]. Statistical Methollogy, 2004,1(2) : 105 - 128.
  • 5龚锐,陈仲常,杨栋锐.GARCH族模型计算中国股市在险价值(VaR)风险的比较研究与评述[J].数量经济技术经济研究,2005,22(7):67-81. 被引量:99
  • 6吴振翔,陈敏,叶五一,缪柏其.基于Copula-GARCH的投资组合风险分析[J].系统工程理论与实践,2006,26(3):45-52. 被引量:86
  • 7Engle R F. Dynamic conditional correlation- a simple class of multi- Variate GARCH models[J]. Journal of Business and Economic Statistics, 2002,20- 339 - 350.
  • 8Rombouts Jeroen V K, Verbeek Mamo. Evaluating portfolio value- at - risk using semi - parametric GARCH models[ R]. working papers,2004:1 - 30.
  • 9Morimoto Takayuki, Kawasaki Yoshinori. Empirical oomparison of multivariate GARCH models for estimation of intraday value at risk[ R]. working paper,2008:1 - 40.
  • 10冯金余.基于多元GARCH模型的投资组合VaR测度[R].Working Paper,2008:1-12.

二级参考文献61

  • 1吴振翔,叶五一,缪柏其.基于Copula的外汇投资组合风险分析[J].中国管理科学,2004,12(4):1-5. 被引量:50
  • 2韦艳华,张世英,郭焱.金融市场相关程度与相关模式的研究[J].系统工程学报,2004,19(4):355-362. 被引量:83
  • 3张尧庭.《金融市场的统计分析》[M].广西师范大学出版社,1999年..
  • 4Bangia, D , F X Diebold, T Schuermann and J D Stroughair, "Modeling Liquidity Risk, With Implication for Traditional Market Risk Measurement and Management", 1998, working paper, Wharton Financial Institutions Center.
  • 5Bertsimas, D and A W Lo, "Optimal Control of Execution Costs" [J]. Journal of Financial Markets, 1998, 1, 1-50.
  • 6Dowd, Kevin, Beyond Value at Risk [M]. 1998, New York, John Wiley & Sons.
  • 7Duffie, D and J Pan, "An Overview of Value at Risk" [J]. Journal of Derivatives, 1997, 4 (3) :7-49.
  • 8Hisata, Yoshifumi and Yasuhiro Yamai, "Research Toward the Practical Application of Liquidity Risk Evaluation Methods", 2000, working paper, Bank of Japan.
  • 9Holthausen, R W , R W Leftwich, and D.Mayers, "The Effect of Large Block Transactions on Security Prices: A Cross-Sectional Analysis" [J]. Journal of Financial Economics, 1987, 19, 237-268.
  • 10Jarrow, R and A Subramanian, "Mopping up Liquidity" [J]. Risk, 1997, December: 170-173.

共引文献263

同被引文献47

  • 1兰旺森,赵国浩.应用复杂网络研究板块内股票的强相关性[J].中山大学学报(自然科学版),2010,49(S1):65-69. 被引量:15
  • 2Ane, Kharoubi. Dependence structure and risk measure [J]. The Journal of Business, 2003, Vol.76, no.3: 411-p438.
  • 3Cherubini U. and Luciano E. Value at risk trade-off and capital allocation with copulas[J]. Economic Notes, 2001,30: 235-256.
  • 4Diebold,F.X,T.Gunther, and A.S.Tay. Evaluating density forecasts, with applications to financial risk management [J]. International Economic Review,1998, 39:863 - 883.
  • 5Engle R F. Dynamic conditional correlation: a simple class of muhi-variate GARCH models [J]. Journal of Business and Economic Statistics, 2002, 20:339 - 350.
  • 6Fermanian, Jean-David & Scaillet, Olivier. Sensitivity analysis of VaR and Expected Shortfall for portfolios under netting agreements [J]. Journal of Banking & Finance, Elsevier, 2005,vol. 29(4): 927-958.
  • 7C. Genest, K. Ghoudi and L.-P. Rivest. A semiparametric estimation procedure of dependence parameters in multivariate families of distributions[J]. Biometrika, 1995,82:543 - 552.
  • 8Morimoto Takayuki , Kawasaki Yoshinori. Empirical comparison of muhivariate GARCH models for estimation of intraday value at risk. working paper ,2008:1 - 40.
  • 9Patton, A. J. Modelling asymmetric exchange rate dependence [J]. International Economic Review, 2006,47: 527-556.
  • 10罗付岩,邓光明.基于时变Copula的VaR估计[J].系统工程,2007,25(8):28-33. 被引量:34

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部