期刊文献+

从CT体数据场提取人体器官的方法 被引量:2

Human Organ Extraction Method from CT Volumetric Data
在线阅读 下载PDF
导出
摘要 改进传统窗口调节函数,结合模糊集理论和三维区域生长技术,提出并实现一种采用CT体数据场的人体器官提取新方法。首先在DICOM图像的原始数据空间域中,将窗口调节至使对应组织器官的灰度信息和形状信息的显示最为充分;然后,运用模糊集理论对其进行模糊增强,最后对增强后的结果运用区域生长法将器官提取出来。实验表明本方法能够有效提取出多数的人体器官。不仅提取结果细节清晰,而且分割成功率达75%以上,同时该方法具有较强的鲁棒性。 A novel window adjustment function was developed for organ extraction from CT volumetric data. Based on the adjustment function, combining to fuzzy sets theory and 3D region growing technology, an approach for organ extraction from the CT human volumetric data was developed. Firstly, to expose the organs of interest fully, the window was adjusted appropriately in the raw data space of DICOM images; and then the volumetric data contrast was enhanced using fuzzy sets; Lastly, the organs were extracted using 3D region growing algorithms. Experimental results showed that the proposed method could effectively extract most human organs and was also robust. The extraeted organs were in details with the accuracy rate no less than 75 %.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2009年第1期37-41,共5页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金重点项目(60736008) 国家自然科学基金资助项目(60673100/F020106)
关键词 体数据场 组织器官 窗口调节 对比度增强 三维区域生长 volumetric data organ window adjustment contrast enhancement 3D region growing
作者简介 通讯作者。E-mail:tianyun@bnu.edu.cn
  • 相关文献

参考文献13

  • 1Kim JM, Cai WD, Wu H, et al. A new way for multi-dimensional medical data management : volume of iInterest (VOI) based retrieval of medical images with visual and functional features [ J]. IEEE Trans Inf Technol Biomed, 2006, 10(3) : 598 - 607.
  • 2Zoroofi RA, Sato Y, Nishii T, et al. Automated segmentation of necrotic femoral head from 3D MR data [J]. Comput Med Imaging Graph, 2004, 28(5): 267- 278.
  • 3刁现芬,陈思平,梁长虹,吴佩娜.耳蜗长度的无创伤性测量及其横断面的提取[J].中国生物医学工程学报,2007,26(1):149-152. 被引量:3
  • 4章毓晋.图像分割[M].北京:科学出版社,2001..
  • 5Bruckner S, Grimm S, Kanitsar A, et al. Illustrative context- preserving exploration of volume data [J]. IEEE Trans Vis Comput Graph, 2006, 12(6) :1 - 11.
  • 6Alexandra LC. 3D modeling and reconstruction of peripheral arteries [ D ]. Austria: Institute of Computer Graphics and Algorithms, Vienna University of Technology,, 2006.
  • 7Huh S, Ketter TA, Sohn KH, et al. Automated cerebrum segmentation from three-dimensional sagittal brain MR images [ J]. Comput Biol Med, 2002, 32(5): 311 -328.
  • 8Atkins MS, Mackiewich BT. Fully automatic segmentation of the brain in MRI [J]. IEEE Trans Med Imaging, 1998, 17(1): 98- 107.
  • 9Khotanlou H, Atif J, Colliot O, et al. 3D brain tumor segmentation using fuzzy classification and deformable model [ A]. Proceedings of International Workshop on Fuzzy Logic and Applications WILF 2005 [C]. Germany: Springer Berlin Press, 2005. 312-318.
  • 10Adams R, Bischof L. Seeded region growing [ J ]. IEEE Trans Pattern Anal Machine Intell, 1994, 16(6) : 641 - 647.

二级参考文献30

  • 1邵虹,张继武,崔文成,孙中原,赵宏.基于图象内容的颅骨缺如自动分析研究[J].中国图象图形学报(A辑),2003,8(2):214-218. 被引量:4
  • 2杜光伟,曹会志,罗述谦.一种脑MRA图像自动分割算法及其在图像导引神经外科中的应用[J].中国生物医学工程学报,2005,24(4):438-442. 被引量:4
  • 3罗述谦 周果宏.医学图像处理与分析[M].北京:科学出版社,2003.1-2.
  • 4E N Mortensen, B S Morse, W A Barrett, J K Udupa. Adaptive Boundary Detection Using 'Live-Wire' Two-Dimensional Dynamic Programming [C]. In IEEE Proceedings of Computers in Cardiology,USA: Durham, October 1992, 635-638.
  • 5E N Mortensen, W A Barrett. Intelligent Scissors for Image Composition [C]. In Proceedings of ACM SIGGRAPH'95, USA: Los Angeles, August 1995, 191-198.
  • 6A Schenk, G Prause, H O Peitgen. Efficient Semiautomatic Segmentation of 3D Objects in Medical Images [C]. MICCAI 2000 Lecture Notes in Computer Science, USA: Pittsburgh, October 2000,186-195.
  • 7A Schenk, G Prause, H O Peitgen. Local Cost Computation for Efficient Segmentation of 3D Objects with Live Wire [C].Proceedings of SPIE 2001, USA: San Diego, 2001, 4322: 1357-1364.
  • 8E N Mortensen, W A Barrett. Interactive Segmentation with Intelligent Scissores [J]. Graphic Models and Imaging Processing,1998, 60(5): 349-384.
  • 9Yoo SK,Wang G,Rubinstein JT,et al.Three-dimensional modeling and visualization of the cochlea on the Internet[J].IEEE Trans.on Information Technology in Biomedicine(Special Issue on Multimedia Information Technology in Biomedicine),2000,4(2):144-151.
  • 10Yoo SK,Wang G,Rubinstein JT,et al.Three-dimensional geometric modeling of the cochlea using helico-spiral approximation[J].IEEE Trans.Biomedical Engineering,2000,47(10):1392-1402.

共引文献589

同被引文献24

  • 1Wen-XingWang,Guo-ZhengYan,FangSun,Ping-PingJiang,Wen-QiangZhang,Gen-FuZhang.A non-invasive method for gastrointestinal parameter monitoring[J].World Journal of Gastroenterology,2005,11(4):521-524. 被引量:15
  • 2僧德文,李仲学,李翠平,李春民.Marching Cubes算法改进研究及应用[J].计算机应用研究,2006,23(7):50-51. 被引量:6
  • 3杨丽萍,张爱武.可视化类库VTK在三维建模中的应用[J].首都师范大学学报(自然科学版),2007,28(1):73-76. 被引量:10
  • 4郭旭东,颜国正,何文辉.全消化道微型诊查胶囊的遥测定位[J].航天医学与医学工程,2007,20(4):294-298. 被引量:1
  • 5Prastawa M, Bullitt E, HO S, et al. A brain tumor segmenta- tion framework based on outlier detection[J]. Medical Image Analysis,2004,8(3) : 275-283.
  • 6Amandeep KAUR, Rakesh SINGH. Wavelets for edge detec- tion in noisy images[C]//National Conference on Computation- al Instrumentation, India,2010: 184-186.
  • 7K. Somasundaram, K. Ezhilarasan. Edge detection in MRI of head scans using fuzzy logic[C]//International Conference on Advanced Communication Control and Computing Technolo- gies, India, 2012 : 131-135.
  • 8K. Somasundaram, T. Kalaiselvi. Automatic brain extraction methods for T1 magnetic resonance images using region labe- ling and morphological operations[J]. Computers in Biology and Medicine, 2011,41 : 716-725.
  • 9Canny J. A computational approach for edge detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 1986,8 (6) : 679-698.
  • 10Haralick R M, SHAPIRO L G. Image segmentation techniques [J]. Computer Vision Graphics and Image Processing, 1985,29 (2) : 100-132.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部