期刊文献+

广义超弹性杆波动方程的行波解 被引量:1

Traveling wave solution to generalized hyperelastic-rod wave equation
在线阅读 下载PDF
导出
摘要 就广义超弹性杆波动方程的行波解进行了研究,讨论了该方程存在光滑行波解的必要条件,研究了当方程中g(u)为三次多项式和指数形式时行波解的具体情况及存在条件,利用相空间(φ,η)讨论了广义超弹性杆波动方程的平衡点及相应的轨线. The traveling wave solution of generalized hyperelastic-rod wave equation is studied and necessary conditions to the existence of lubricous traveling wave solution are discussed. This paper studies the specific mode and the existence of traveling wave solution to the eqution, in which g(u) is a cubic polynomial function or an exponential function. Via phase space (φ,η) , the equilibrium point and trajectory of this equation are discussed.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2009年第1期260-262,共3页 Journal of Harbin Institute of Technology
基金 江苏省高校自然科学研究计划资助项目(05KJB110018)
关键词 超弹性杆波动方程 行波解 平衡点 轨线 hyperelastic-rod wave equation traveling wave solution equilibrium point trajectory
作者简介 夏良娟(1976-),女,硕士研究生.
  • 相关文献

参考文献7

  • 1MIURA M R. Baeklund transformation [ J ]. Springer verlag, 1978,4 : 154 - 156.
  • 2WANG M L. Exact solutionhs for a compound kdv-burgers Eqution[ J]. Phys letl A, 1996,213:279 - 287.
  • 3TIAN B. New families of exact solutions to the integrable dispersive long wave equations in ( 2 + 1 ) -dimensional space[ J]. J Phys A : Math Gen, 1996,29:2895 - 2903.
  • 4Penny U. A Course in Language Teaching Practice and Theory [ M]. New York:Cambridge University Press, 1996.
  • 5PARKER A. On the Camassa-holm equation and a direct method of solution I. Bilinear form and solitary waves [ J ]. Proc R Soc Lond A,2004,460:2929 - 2957.
  • 6TIAN Lixin, SONG Xiuying. Mew peaked solitary wave solutions of the generalized camassa-holm equation [ J ]. Chaos Splitions Fractle,2004,19:621 - 637.
  • 7COCLITE G M, HOLDEN H, KARLSEN K H. Global weak solutions to a generalized hyperelastic-rod wave equation [ J ]. SIAM J Math Anal, 2005,37 (4) : 1044 - 1069.

同被引文献7

  • 1Dai Huihui. Model equations for nonlinear dispersive waves in a compressible Mooney Rivlin rod[J]. Acta. Mech., 1998, 127: 193-207.
  • 2Coclte G.M., Holden H., Karlsen K.H. Global weak solutions to a generalized hyperelastic-rod wave equation[J]. SIMA., 2005, 3T: 1044-1069.
  • 3Helge Holden, Xavier Rayanud. Global conservative solutions of the generali-zed hyperelastic- rod wave equation[J]. Differential Equations, 2007, 233: 448-484.
  • 4Kato T. Quasi-linear equations of evolution with applications to partial differential equations[J]. In: Springer lecture, Notes in Mathematics, 1975, 448: 25-75.
  • 5Kato T. On the Cauchy problem for the generalized KdV equation[J]. Studies in Applied Mathematics, Advances in Mathematics, supplementary studies, 1983, 18: 93-128.
  • 6丁丹平,石敏,毕云蕊.广义超弹性杆方程解的爆破[J].数学学报(中文版),2009,52(6):1111-1118. 被引量:1
  • 7杨灵娥,郭柏灵.浅水波方程的初边值问题[J].数学理论与应用,2003,23(1):1-10. 被引量:4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部