摘要
针对结合Shamir秘密共享技术的门限签名方案存在超过门限值的小组成员利用其所掌握的秘密份额能够恢复系统秘密信息的问题,利用椭圆曲线上离散对数的难解性设计了一种新的带门限值的群签名方案,包括系统建立、成员加入与删除、签名生成和签名验证与打开.新方案中,只要有效的单用户签名不少于门限值,即可产生有效的群签名,且门限值可以根据文件的重要性方便的进行更改.新方案没有采用Shamir的秘密共享技术,所以可以抵抗针对秘密共享技术相应的攻击.
Aiming at the problem that in the threshold signature scheme based on Shamir's threshold scheme members beyond threshold value can resume the system secret information by using their secret subkey, a new group signature with threshold value based on the discrete logarithm problem on the elliptic curve is presented, including system initialization phase, member login and logon phase, signature generation phase, signature verification and signer identify verification phase. In the new scheme, the valid group signature can be made as long as the number of the valid member signatures is no less than the threshold value, and the threshold value can be changed conveniently according to the importance of the documents. Without combining with the Shamir's threshold scheme, the new scheme can defend itself against the corresponding atttacks to the secret sharing scheme.
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2008年第A01期43-46,共4页
Journal of Southeast University:Natural Science Edition
关键词
门限群签名
群签名
椭圆曲线
门限值
秘密共享
threshold group signature
group signature
elliptic curve
'threshold value
secret sharing
作者简介
闫杰(1983-),男,助教.
尹旭日(联系人),男,博士,教授,yinxuri@163.com.