期刊文献+

基于统计方法的面向旅游问句分类实验研究 被引量:2

An Empirical Study on Questioning Sentence Classification for Tour Domain based on Statistic Methods
在线阅读 下载PDF
导出
摘要 根据旅游领域知识的特点,设计了面向旅游问句的分类体系。利用信息增益、互信息、交叉熵和2χ统计四种特征选择方法及支持向量机分类器,对网上常见的旅游真实问句分类进行了实验研究,实验结果表明:在现有问句分类体系下,信息增益的特征选择方法在特征空间维数为550维时,分类旅游问句的结果是最佳的。 In this paper, a question classification system is developed according to the knowledge characteristic of traveldomain. Using the four kinds feature selection methods which are Information Gain, Mutual Information, Cross Entropy and Xz Statistics and support vector machine, this paper presents an empirical study on question sentence classification for tour domain. The experiments show that using the feature selection of Information Gain with 550 dimensions, the classification results are best.
出处 《电脑开发与应用》 2009年第1期14-16,共3页 Computer Development & Applications
基金 国家自然科学基金项目(60573074) 教育部科学技术研究重点项目(207018) 山西省自然科学基金(2007011042) 山西高校科技研究开发项目(200611002) 山西省科技攻关项目(051129)资助
关键词 旅游问句分类 特征选择 支持向量机 tour question sentence classification, feature selection, support vector machine
作者简介 张雪芬,女,1981年生,硕士研究生,研究方向:文本挖掘,机器学习等。
  • 相关文献

参考文献9

  • 1郑实福,刘挺,秦兵,李生.自动问答综述[J].中文信息学报,2002,16(6):46-52. 被引量:168
  • 2郑实福.[D].哈尔滨:哈尔滨工业大学计算机科学与工程系,2002.
  • 3Zhang Dell,Lee Wee Sun. Question classification using support vector machines[C]. In Proceedings of the 26th annual international ACM SIGIR Conference on Researchand Development Information Retrieval. New York : ACM Press, 2003.
  • 4Buckley C, Singhal A, Mitra M. New retrieval approaches using SMART[C]. In Proceedings of the Fourth Text Retrieval Conference. Gaithersburg: NIST Special Publication , 1995.
  • 5Li X, Roth D. Learning Question Classifier [C].Taipei: Taiwan In Proceedings of the 19th International Conference on Computational Linguistics, 2002,1:1-7.
  • 6Voorhees E. Overview of the TREC 2003 question answering traek[C]. In Proceedings of the 11th Text Retrieval Conference. Gaithersburg: NIST Special Publication, 2003.
  • 7Kadri H, Wayne W. Question classification using support vector machines and error correcting code [C]. In: Proceedings of HLTNACCL 2003, Edmonton, Apr, 2003 : 28-30.
  • 8李荣陆.文本分类若干关键技术研究[D].上海:复旦大学博士论文,2005.
  • 9张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2304

二级参考文献12

  • 1[8]Ulf Hermjakob. Parsing and Question Classification for Question Answering. Proceeding of the workshop on Open-Domain Question Answering at ACL-2001
  • 2[9]Eugene Agichtein, Steve Lawrence, Luis Gravano. Learning Search Engine Specific Query Transformations for Question Answering. ACM 2001,169- 178
  • 3[10]Soo-Min Kim, ae-Ho Baek, Sang-Beom Kim, Hae-Chang Rim Question Answering Considering Semantic Categories and Co-occurrence Density. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 4[11]Marius Pasca, Sanda Harabagiu. High-Performance Question/Answering. 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval ( Sigir-01 ). New Orleans, LA. September 9 - 13,2001
  • 5[1]Ittycheriah,M. Franz,W-J Zhu,A. Ratnaparkhi. IBM's Statistical Question Answering System. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 6[2]D. Elworthy. Question Answering Using a Large NLP System. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 7[3]L. Wu,X-j Huang,Y. Guo,B. Liu,Y. Zhang. FDU at TREC-9:CLIR,Filtering and QA Tasks. Proceedings of the night Text Retrieval Conference(TREC-9)
  • 8[4]R.J. Cooper, S. M. Rüger. A Simple Question Answering System. Proceedings of the night Text Retrieval Conference(TREC-9)
  • 9[5]C.L.A. Clarke, G. V. Cormack, D. I. E. Kisman, T. R. Lynam. Question Answering by Passage Selection. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 10[6]S-M Kim,D-H Baek,S-B Kim,H-C Rim. Question Answering Considering Semantic Categories and CoOccurrence Density. Proceedings of the night Text Retrieval Conference(TREC-9)

共引文献2467

同被引文献19

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部