期刊文献+

一种基于最小区域选择的LDPC码迭代译码算法 被引量:1

Min-zone selection decoding algorithm for LDPC codes
在线阅读 下载PDF
导出
摘要 提出一种基于最小区域选择的LDPC(low-density parity-check)码迭代译码算法(min-zone selection decoding algorithm,MZS decoding).MZS算法把最小区域选择和近似计算的思想结合起来,针对传统的置信度传递译码算法(belief propagation decoding algorithm,BP decoding)中的Q(x)函数提出了一种有效的简化处理方式,而这种简化处理只产生少许的性能损失.仿真结果证明,通过合理的参数设置,MZS算法几乎可以提供和BP算法同样优秀的性能. An iterative decoding algorithm for low-density parity-check (LDPC) codes, named rain-zone selection (MZS) decoding algorithm, was proposed. The methods of min-zone selecting and approximation were combined in the proposed decoding algorithm in order to deal with the Q(x) function involved in the traditional belief propagation (BP) decoding algorithm. Simulation results show shat the computations in the decoding process of LDPC codes incurred only a little performance degradation. In fact, it is observed that, with proper selection of parameters, the MZS decoding algorithm can provide performance comparable to that of the BP decoding algorithm.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2008年第12期1365-1371,共7页 JUSTC
基金 国家自然基金项目(60496314)资助
关键词 LDPC码 置信度传递 最小和 最小区域选择 线性近似 均值近似 LDPC codes belief propagation Min-Sum min-zone selection linear approximation meanapproximation
作者简介 徐鹰,男,1981年生,博士生。研究方向:无线通信.E-mail:xuying@mail.ustc.edu.cn 通讯作者:卫国,博士/教授.E—mail:wei@ustc.edu.cn
  • 相关文献

参考文献12

  • 1Gallager R G. Low density parity check codes[J].IRE Transactions on Information Theory, 1962, IT-18: 21- 28.
  • 2MacKay D J. C. Good error-correcting codes based on very sparse matrices[J]. IEEE Transactions on Information Theory, 1999,45(2):399-431.
  • 3Richardson T J, Shokrollahi M A, Urbanke R L. Design of capacity approaching irregular low-density parity-check codes [J]. IEEE Transactions on Information Theory, 2001,47(2) : 619-637.
  • 4Hirst S, Honary B. Decoding of generalized low-density parity-check codes using weighted bit-flip voting[J].IEE Proceedings of Communications, 2002, 149(1):1-5.
  • 5Zhang J, Fossorier M P C. A modified weighted bitflipping decoding of low-density parity-check codes[J].IEEE Communications Letters, 2004, 8(3): 165-167.
  • 6Massey J L. Threshold Decoding[M]. Cambridge, MA: MIT Press, 1963.
  • 7Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference [M]. San Mateo: Morgan Kaufmann Publishers, 1988.
  • 8Fossorier M P C, Mihaljevic M, Imai H. Reduced complexity iterative decoding of low-density parity check codes based on belief propagation[J].IEEE Transactions on Communications, 1999, 47 ( 5 ):673-680.
  • 9Chen J, Fossorier M P C. Near optimum universal belief propagation based decoding of low-density parity check codes[J].IEEE Transactions on Communications, 2002, 50(3): 406- 414.
  • 10Kim N, Park H. Modified UMP-BP decoding algorithm based on mean square error[J]. Electronics Letters, 2004, 40(13): 816-817.

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部