期刊文献+

关于一类图的Hamilton路计数问题 被引量:1

The Number of Hamilton-path of Some Special Partite Tournament
在线阅读 下载PDF
导出
摘要 研究了有向图的两个方面:竞赛图的Hamilton-路数的计数及有关竞赛排名的相关问题,多部或n-部竞赛图是完全n-部图的一个定向。根据Bongdy的强连通n-部竞赛图包含一个m-圈,其中m∈{3,4,…,n},Yeo的正则多部竞赛图是Hamilton图的原理,笔者在上述结论基础上,得到某些特殊的多部竞赛图的Hamilton路数的一些结论。 This paper deals with two aspects of directed graphs: the number of Hamilton-path and the problem of the competition taxis. A multipartite or n-partite tournament is an orientation of a complete n-partite graph. In 1976, Bondy proved that a strong n-partite tournament contains an m-cycle, for every rn E { 3, 4,…, n }. Yeo showed that regular multipartite tournament is Hamiltonian. To the research of directed graphs, many references consider mainly the existence of Hamilton-path for directed graphs, but few consider the number of Hamilton-path. This thesis applies the above results and obtains some theorems about some special n-partite tournament.
作者 范庆民
出处 《太原理工大学学报》 CAS 北大核心 2009年第1期88-90,共3页 Journal of Taiyuan University of Technology
关键词 多部竞赛图 哈密尔顿圈 哈密尔顿路 regular maltipartite tournament hamiltonian cycle hamilton-path
作者简介 范庆民(1954--),女,河南修武人,副教授,主要从事图论及矩阵理论研究,(E-mail)tyutfanqingmin07@yahoo.com.cn
  • 相关文献

参考文献7

  • 1Reinhard Diestel. Graph Theory[M]. Electronic Edition. New York:Springer-Verlag,2000.
  • 2L Redei. Ein Kombbinatorischer Satz[J]. Acta Litt Sci Szehed, 1984,7:39-43.
  • 3J W Moon. On subturnaments of a tournaments[J]. Canad Math Bull, 1996, 9:297-301.
  • 4A Yeo. One-direfua Sugraphs in semicomplete multipartite digraph[J]. Graph Theory, 1997,24:175-185.
  • 5罗永萍,杨爱民.竞赛图中Hamilton路数的一个下界(英文)[J].华北工学院学报,2004,25(6):438-440. 被引量:2
  • 6Harary F. Graph Theory[M]. Reading MA:Addison-Wesley,1969.
  • 7Bondy G.T with Applications[M].北京:科学出版社,2000.

二级参考文献3

  • 1Volkmann L. Longest pathsil semicomplete digraphs[J]. Discrete Math. , 1999, 199: 279-284.
  • 2Bang Jensen J, Gutin G. Digraph: Theory, Algorithms and Applications[M]. Springer-Verlag Lundon Berlin Heidelberg, 2001.
  • 3Moon J W. On subtournaments of a tournament[J]. Canad. Math. Bull, 1966, 9: 297-301.

共引文献1

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部