期刊文献+

Beurling-Ahlfors扩张伸张函数的估计

Estimates of the Dilatation Function for Beurling-Ahlfors Extension
在线阅读 下载PDF
导出
摘要 设h(x)是实轴上的保向同胚,满足h(±∞)=±∞.当h(x)的拟对称函数ρ(x,t)被递减函数ρ(t)所控制时,h(x)的Beurling-Ahlfors扩张的伸张函数具有以下估计:当ρ*≥45时,D≤2ρ*;而当1≤ρ*<45时,D≤2ρ*+21ρ*.其中,ρ*=ρ(2y). Let h be a homeomorphism of R onto itself with h(±∞)=±∞, when the quasisymmetric function p(x, t) of h is controled by a decreasing function p(t), the dilatation function D obtained by the Beurling-Ahlfors extension of h is further estimated as follows: if p^*≥4/5, then D≤2p^* ,and if 1≤p^*〈4/5, then D≤2p^*+1/2p^*, where p^*=p(y/2).
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2009年第1期108-110,共3页 Journal of Huaqiao University(Natural Science)
基金 福建省自然科学基金资助项目(Z0511025)
关键词 拟共形映照 BEURLING-AHLFORS扩张 伸张函数 拟对称函数 quasiconformal mapping Beurling-Ahlfors extension dilatation function quasisymmetric function
作者简介 通信作者:王朝祥(1966-),男,讲师,主要从事函数论的研究.E-mail:wchaox@hqu.edu.cn.
  • 相关文献

参考文献7

  • 1BEURLING A, AHLFORS L. The boundary correspondence under quasiconformal mappings [J]. Acta Math, 1956,96 : 125-142.
  • 2AHLFORS L V. Lectures on quasiconformal mappings[M]. Princeton: Van Nostrand, 1966.
  • 3LEHTINEN M. The dilatation of Beurling-Ahlfors extension of quasisyrmnetric functions[J]. Ann Acad Sci Fenn Ser AI Math, 1983, 8: 187.
  • 4方爱农.广义Beurling-Ahlfors定理[J].中国科学(A辑),1995,25(6):565-572. 被引量:7
  • 5CHEN Ji-xiu,CHEN Zhi-guo, HE Cheng-qi. The boundary correspondence under μ(z)-homeomorphisms[J]. Michigan Math J, 1996, 43:211.
  • 6郑学良,方爱农.伸张函数增长阶的估计[J].数学进展,2003,32(5):591-596. 被引量:4
  • 7郑学良,王洁.关于伸张函数估计的一点注记[J].台州学院学报,2004,26(3):1-5. 被引量:2

二级参考文献7

  • 1ChenJixiu Chen Zhiguo amp He Chengqi.Boundary correspondence under μ(z)-homeomor-phisms [J].Michigan Math. J.,1996,43:211-220.
  • 2Beurling A, Ahlfors L V. The boundary correspondence under quasiconformal mappings [J]. Acta Math,1956, 96: 125-142.
  • 3Lehtinen M. The dilatation of Beurling-Ahlfors extension of quasisymmetric functions [J]. Ann Acad Sci Fenn Ser AI Math, 1983, 8(1): 187-191.
  • 4Chen Jixiu, Chen Zhiguo & He Chengqi. Boundary correspondence under μ(z)-homeomor-phisms [J].Michigan Math J, 1996, 43: 211-220.
  • 5Fang Ainong. Generalized Beurling-Ahlfors Theorem [J]. Science in China(series A), 1995, 25(6): 565-572.
  • 6Li Zhong. The lower bound of the maximal dilatation of Beurling-Ahlfors extension [J]. Ann Acad Sci Fenn Ser. AI Math, 1990, 15: 75-81.
  • 7Edgar Reich. Quasiconformal mappings with prescribed boundary values and a dilatation bound[J] 1978,Archive for Rational Mechanics and Analysis(2):99~112

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部